
Improving Estimates of Mean Welfare and Uncertainty in Developing
Countries∗

Joshua D. Merfeld† Hai-Anh Dang‡ David Newhouse§

2025-05-16

Abstract
Reliable small-area estimates of economic welfare significantly inform the design and evaluation of
development policies. This paper compares the accuracy of wealth estimates obtained from the empirical
best predictor (EBP) of a linear nested error model, Cubist regression, extreme gradient boosting, and
boosted regression forests. The evaluation draws two-stage samples from unit-level household census data
in seven developing countries, combines them with publicly available geospatial indicators to generate small
area estimates of assets for all seven countries and poverty for two, and evaluates these estimates against
census-derived benchmarks. Extreme gradient boosting and Cubist regression generally produce more
accurate predictions than traditional EBP models. A proposed two-stage residual bootstrap procedure
slightly underestimates confidence intervals, but leads to higher coverage rates than the parametric
bootstrap approach used for EBP predictions. These results demonstrate that, given a sufficiently large
sample of enumeration areas, predictions from extreme gradient boosting or Cubist regression with a
two-stage residual block bootstrap generally provide more accurate point and uncertainty estimates for
generating small-area welfare estimates.
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1 Introduction

Accurate measures of welfare for spatially disaggregated areas are valuable inputs into the design and

evaluation of effective development policies (Atkinson, 2019; Blumenstock, 2016; Ravallion, 2015; Merfeld

and Morduch, 2023; McBride et al., 2022). Yet, most estimates of welfare are derived from household surveys

that can only produce reliable statistics at higher levels of aggregation, mostly because of the high cost of

data collection (Fujii and van der Weide, 2020; Kilic et al., 2017). Small area estimation combines survey

data with more comprehensive auxiliary data to obtain estimates for small areas, in this case defined as one

administrative level below that which survey estimates are considered to be sufficient reliable to publish.

These more granular estimates can improve geographic targeting (Elbers et al., 2007) as well as program and

policy evaluation (Ratledge et al., 2021). While some countries can draw on rich administrative data such

as income tax records to serve as auxiliary data, developing countries do not typically maintain accurate

and up-to-date administrative data sources. It is quite common to predict welfare with census data and a

contemporaneous survey – following Elbers et al. (2003) or Molina and Rao (2010). But in poorer countries,

census data are usually collected infrequently. As a result, official statistics on welfare in small areas tend to

be dated.

Against this backdrop, recent advances in machine learning and the growing availability of non-traditional data

sources have led to the proliferation of new options for small area estimation. For example, Blumenstock et al.

(2015) use mobile phone records to infer the socioeconomic status of phone owners in Rwanda and Aiken et al.

(2023) use mobile phone call data records to predict targeting performance of programs in Togo. However,

one drawback of mobile phone data is that – like banking records – the population of mobile-phone owners

may be systematically different from the population of those without phones. Satellite-derived geospatial

data do not suffer from this selection bias and have become increasingly popular in economics (Donaldson

and Storeygard, 2016). Previous research has demonstrated that geospatial data is a promising source of data

to estimate economic growth (Henderson et al., 2012), labor force participation (Merfeld et al., 2022), and

welfare more generally (Jean et al., 2016; Yeh et al., 2020; Chi et al., 2022; Engstrom et al., 2022; Van der

Weide et al., 2024).1

In this paper, we evaluate four main methods to estimate welfare at low levels of aggregation in developing

countries. Importantly, we propose and implement a two-stage weighted residual bootstrap procedure to

estimate uncertainty for the set of machine learning methods; estimates of uncertainty are an ongoing, but

current unsolved, issue with machine learning predictions (Chi et al., 2022) and our results are encouraging.
1Newhouse (2024) provides a recent review of the literature of applications of geospatial small area estimation to wealth and
poverty.
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We evaluate the performance of these methods using unit-level census data across seven developing countries

in Africa and Asia: Burkina Faso, Madagascar, Malawi, Mozambique, Sri Lanka, Tanzania, and Vietnam.

These countries were selected due to the availability of georeferenced census data. In Malawi and Tanzania

we are able to extend the evaluation to include a headcount poverty measure in addition to the asset index,

while in the other five countries we evaluate prediction of an asset index, similar to Chi et al. (2022) and

Masaki et al. (2022).

The first main method we evaluate is empirical best predictions based on a nested error linear model, which

we refer to as EBP. This estimation method comes from a long history of small area estimation in statistics.

(Battese et al., 1988; Jiang and Lahiri, 2006; Molina and Rao, 2010). We also evaluate three newer machine

learning methods: Cubist regression models (Quinlan et al., 1992; Wang and Witten, 1997), extreme gradient

boosting (Chen and Guestrin, 2016) – more commonly known as XGBoost – and boosted regression forests,

or BRF (Friedberg et al., 2020; Tibshirani et al., 2018). As a robustness check, we also evaluate another

traditional method commonly used in small area estimation, the ELL method (Elbers et al., 2003).2 These

methods differ in their level of parsimony and transparency on the one hand, and their predictive accuracy

on the other, and a key goal of this exercise is to better understand the terms of this trade-off in the context

of welfare prediction. In each case, we specify models at the sub-area level, which in these contexts refers to

highly disaggregated administrative areas akin to groups of villages. We then aggregate predictions to obtain

estimates at the target area for each country.

For predictors, we use satellite-derived geospatial indicators that are available across much of the globe,

meaning that the methods and data evaluated here are widely applicable in cases where geolocated survey

data are available. We use shapefiles from the seven countries to pull geospatial data from multiple sources,

which is then combined with samples drawn from the unit-level census data. In each country, we simulate

100 two-stage samples – first randomly selecting enumeration areas and then randomly selecting households

based on survey designs of actual household surveys in each country – and compare the overall performance

across simulations, ensuring that the results are derived from one hundred possible samples rather than a

single sample. Under these conditions, XGBoost and Cubist regression tend to outperform EBP and BRF in

terms of accuracy, as measured both by Pearson correlations and Mean Squared Deviation. This can be seen

clearly in the first two rows of Table 1.

A key contribution of the paper is the evaluation of a two-stage residual block bootstrap to estimate uncertainty
2See Das and Haslett (2019) for a comparative analysis of several poverty mapping methods including the ELL method, EBP,
and M-quantile. Pratesi and Spagnolo (2023) offer a recent overview of small area estimation methods for measuring poverty.
Another potential SAE method is ESPREE (Isidro et al., 2016). However, we know of no readily available software packages
that implement either M-quantile or ESPREE.
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Table 1: Summary of results

EBP Cubist XGBoost BRF
Correlation (pearson) 0.829 0.868 0.885 0.822
Squared deviation 0.135 0.110 0.096 0.159
Width of CI 0.915 0.883 0.841 1.149
Coverage 0.784 0.842 0.867 0.885
Area under the curve (AUC) 0.897 0.917 0.925 0.909
Poverty targeting (FGT1)
Malawi

10-percent target 0.058 0.054 0.056 0.067
20-percent target 0.052 0.050 0.048 0.058

Tanzania
10-percent target 0.014 0.016 0.015 0.015
20-percent target 0.012 0.012 0.011 0.013

Note: The table shows the average of the statistics listed down the rows, separately for each of
the four methods and across all seven countries. We calculate AUC only for the asset indices.
Higher values equate to better performance. The poverty targeting results are post-transfer
values for only Malawi and Tanzania and are calculated based on what percentage of the total
population is targeted (either 10 or 20 percent). Lower values indicate better targeting.

for the three machine learning method, similar to proposals by Chambers and Chandra (2013) and Luo and

Lai (2021). The presentation of uncertainty statistics has traditionally been less common for machine learning

methods (Chi et al., 2022) but remains an important component of official statistics. The weighted residual

block bootstrap accounts for the hierarchical nature of the data and proceeds in two steps, sampling residuals

– accounting for informative sampling using sampling weights – separately at both the target area level and

the sub-area level, which is the unit of analysis. This procedure slightly underestimates uncertainty, with

average coverage rates of 88.5 percent for BRF, 86.7 percent for XGBoost, and 84.7 percent for Cubist. These

coverage rates, however, exceed the average for EBP (78.4 percent), which are derived from the parametric

bootstrap procedure typically used to generate uncertainty estimates for EBP predictions (Butar and Lahiri,

2003; González-Manteiga et al., 2008). Because XGBoost and Cubist are more accurate on average than EBP,

their confidence intervals are smaller (rows three and four of Table 1). Alternative accuracy statistics lead to

similar conclusions. XGBoost is the most accurate and EBP is the least accurate when we compare "area

under the curve" (AUC) estimates across simulations (Hanna and Olken, 2018). Finally, when we simulate a

hypothetical cash transfer covering a fixed percentage of the population, targeting areas based on XGBoost

or Cubist predictions reduces poverty by more than EBP predictions in Malawi. However, EBP performs

similarly to XGBoost in Tanzania.

We also document differences in performance across in-sample and out-of-sample areas, given recent evidence

that out-of-sample predictions generated by EBP models can be significantly less accurate than in-sample

predictions when using geospatial data (Newhouse et al., 2025). On average, all four estimators generate
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more accurate predictions in sample than out of sample. EBP shows the largest drop in performance out of

sample, as shown in subsection 3.1. The more flexible nature of the machine learning models appears to be

better suited for predicting into out-of-sample areas than EBP. In addition, out-of-sample EBP predictions

suffer from the unavailability of sample data to condition on when estimating the random area effect.

There are also noticeable differences in precision across in-sample and out-of-sample areas. Since the machine

learning models do not include a random effect conditioned on the sample, the bootstrap procedure estimates

confidence intervals that are roughly the same size for in-sample and out-of-sample areas. Out-of-sample

accuracy is lower than in-sample accuracy, meaning that out-of-sample coverage rates tend to be lower as

well; for example, average coverage rates for wealth estimates using XGBoost fall from 91.8 percent to 83.3

percent. This does not result from overfitting the model to the sample, given that LASSO is used for model

selection in the EBP model and that regularization methods are built into the machine learning algorithms.

Instead, because villages are sampled proportional to their population size, out-of-sample areas tend to be

less populated and may therefore systematically different from in-sample areas, even after taking into account

sampling probabilities. Although sample weights are included, out-of-sample predictions suffer from the

relative paucity of training data from rural, less populated areas.

To better understand which geospatial predictors are important in the models, we examine the prevalence

of different types of variables selected by LASSO for the EBP models. In addition, we calculate Shapely

decompositions of the impact of predictors on the predictors generated by extreme gradient boosting models

(Lundberg et al., 2019). Overall, land cover classification variables, including vegetation indices, consistently

emerge as important predictors. Population estimates, pollution variables, and night time lights also make

important contributions in different contexts. This is consistent with geospatial predictors acting as proxies

for population density and urbanity, which are in turn systematically correlated with wealth and poverty.

(Newhouse, 2024)

Finally, we examine the impact of altering the model specification by expanding the set of candidate

geospatial variables and including additional interactions. In particular, we include MOSAIKS variables (Rolf

et al., 2021) and separately experiment with interacting all predictors (including the MOSAIKS variables)

with a measure of urbanity. Neither adding geospatial predictors nor adding these interactions leads to a

meaningful improvement in prediction accuracy on average. However, both adding additional predictors

and interactions moderately increases estimated uncertainty and improves coverage rates with the machine

learning methods. Interestingly, the inclusion of more candidate predictors leads to worse results for EBP.

These results suggest limited benefits from supplementing a relatively small set of publicly available features

with MOSAIKS indicators. This result is useful because MOSAIKS variables, which are derived from a
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convolutional neural network, are less transparent and interpretable than the geospatial features used in the

main specification. Furthermore, since machine learning methods already have the flexibility to incorporate

interactions, interacting features with a measure of urbanity has little systematic positive impacts on accuracy.

These findings primarily contribute to a newer literature using new types of data to estimate economic

statistics of interest, especially welfare. In the past decade, there has been a proliferation in the use of satellite

imagery to estimate poverty and welfare (Jean et al., 2016; Yeh et al., 2020; Engstrom et al., 2022; Newhouse

et al., 2025; Chi et al., 2022). However, processing raw imagery is typically computationally intensive and

requires specialized skills. In comparison, other types of data are easier to use, like mobile phone call data

records (Aiken et al., 2023; Blumenstock et al., 2015), but these can be more difficult to access due to privacy

concerns and also raise issues related to representativeness. The satellite indicators we use can be obtained

from publicly available sources relatively easily and are much smaller in size.3

We also contribute to a related literature on small area estimation, which grew out of the statistics literature

in the 1970s (Efron and Morris, 1973; Carter and Rolph, 1974; Fay III and Herriot, 1979; Battese et al.,

1988). Earlier work proposed the use of census data for prediction (Elbers et al., 2003) and the empirical best

predictor (Jiang and Lahiri, 2006; Molina and Rao, 2010; Tzavidis et al., 2018) is now one of the most common

implementations of small area estimation. One reason the EBP model is preferred in many applications is its

transparency; a nested-error regression model allows for a straightforward estimation of linear coefficients

with random effects specified at the target area level. A simple table of coefficients indicates exactly how

each variable is related to the measure of household welfare. EBP estimates are also “design consistent,” in

the sense that the estimates converge to the population value as the sample becomes large. On the other

hand, machine learning methods, while possibly generating more accurate predictions, suffer from a lack of

parsimony and transparency (Efron, 2020). While we employ Shapley decompositions to shed light on which

predictors have large impacts on predicted outcomes, it is not straightforward to understand the relationship

between the set of predictors and the prediction. In addition, much of the formal statistical theory related to

measuring the uncertainty associated with predictions from tree-based machine learning is new (Athey et al.,

2019). To the best of our knowledge, this is the first paper to show rigorously that a two-stage, residual

bootstrap can estimate confidence intervals at least as accurate as those currently used for EBP predictions,

when evaluated against unit-level census data as ground truth. In cases where economists and statisticians

are willing to sacrifice parsimony and transparency to achieve more accurate predictions and the sample

data are sufficiently rich to train accurate machine learning models, the availability of a simple and accurate

bootstrap method for estimating uncertainty surmounts a crucial barrier to the use of tree-based machine
3For example, most of the predictors we use in this paper are (freely) available through Google Earth Engine.
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learning algorithms.

These findings are also policy relevant, particularly regarding providing more accurate inputs into designing

cost-effective poverty targeting and budget transfers. For example, recent World Bank guidelines strongly

encourage the adoption of EBP models where census microdata is available (Corral et al. 2022). These results

offer more nuanced insights into the performance of EBP and other methods when applied to geospatial

data, which presents policy makers with different modeling options for the best decision-making outcomes.

If additional information is available for within-community targeting (Elbers et al., 2007), more accurate

poverty estimates would translate into significant poverty reduction. Furthermore, since small area estimation

methods are generally less costly than additional data collection, they offer appealing policy choices in a

poorer country context.4

The rest of the paper is organized as follows. In section 2, we provide a brief overview of the data, the

estimation methods, and the method utilized to validate estimates for accuracy and uncertainty. Then, in

section 3, we review detailed results of simulations, including distinguishing between in and out of sample

performance, performance in poorer or richer areas, using alternative metrics, and different specifications.

Section 4 concludes.

2 Methods

This paper evaluates four different methods for generating predictions of district-level poverty rates: linear

empirical best predictor (EBP) models (Battese et al., 1988; Jiang and Lahiri, 2006; Molina and Rao,

2010); cubist regression models (Quinlan et al., 1992; Wang and Witten, 1997), which we refer to as Cubist

throughout the results section; extreme gradient boosting (Chen and Guestrin, 2016), more commonly known

as XGBoost; and boosted regression forests, or BRF (Friedberg et al., 2020; Tibshirani et al., 2018). Table

2 summarizes key features of these methods, which we describe in greater detail below. Importantly, we

evaluate these methods in the context of developing countries, where census data is often unavailable or

dated. One of our goals is to improve the estimation of key development outcomes in such contexts. As

such, we propose using data that is widely available across the globe: remote sensing and geospatial data.

In addition, we adapt and apply a two-stage residual bootstrap procedure to estimate uncertainty for the

machine-learning models.

These techniques may improve on existing methods but require rigorous evaluation of their accuracy and
4Data gaps are a well-known challenge affecting poverty measurement in poorer countries. While census data are less available
in these poorer countries, fewer household surveys are also infrequently collected. Even where household surveys are available,
they likely display inconsistent quality over longer time periods. Data imputation methods have been increasingly used to help
fill these data gaps (Beegle et al. (2016); Dang et al. (2019); Dang and Lanjouw (2023)).
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precision in multiple contexts before they can be applied. To do that, we compare estimates from these models

to ground-based “truth” derived from unit-level census data in seven countries: Burkina Faso, Madagascar,

Malawi, Mozambique, Sri Lanka, Tanzania, and Vietnam. While these countries were selected because

of the availabiltiy of census data with either enumeration area geocoordinates or sub-area identifiers with

corresponding shapefiles, they also cover a wide variety of contexts, varying in incomes as well as geography.5

The official administrative boundaries available in shapefiles differ across countries. In general, we pull

geospatial data for the lowest administrative level possible. For example, this is the Fokontany in Madagascar,

while in Malawi it is the Enumeration Area. We refer to these levels as “subareas” throughout this paper.

Table 3 presents the number of areas and subareas for each country. Sub-areas, in particular, vary greatly

across countries, from as few as 8,763 in Burkina Faso to as many as 67,239 in Mozambique.6 Areas, on the

other hand, show less variation, ranging from 169 (Tanzania) to 1,515 (Madagsacar). The table also shows

the number of households in the unit-level census data. We have the full census for Madagascar, Mozambique,

and Sri Lanka, but a sub-sample of the full census for the other countries.7

2.1 Outcomes

We focus on two separate measures of welfare: an asset index and poverty rates. We calculate an asset index

for all countries and estimated poverty rates for Malawi and Tanzania, both of which have a near-concurrent

household survey that allows us to impute poverty into the census. Using survey data, we predict household

per capita expenditures for all households in the census using assets. We then classify households as poor (or

not) based on the quantile of their imputed expenditures per capita and the poverty rate in the household

survey. We set a poverty rate of approximately 50 percent in Malawi and 21 percent in Tanzania, which

matches the national poverty rate in the household surveys. Appendix B provides more details on the

imputation procedure, as well as the calculation of the asset indices across countries.

The use of unit-record census data remains the preferred gold standard option when recent census data are

available. However, census data tend to be collected infrequently in most developing countries, and small area

estimates based on satellite indicators are a preferred alternative to reporting direct survey estimates when

census data are old or there have been rapid changes in spatial welfare patterns. We focus on satellite and

other remotely sensed data because they are widely available and predictive of spatial variation in welfare.

Importantly, their wide coverage means that these indicators cover all areas of a given country, which is a

prerequisite for unbiased small area estimates.
5For example, only four of the countries are classified as lower income, while the geography varies from the Sahel to Southeast
Asia.

6The sub-area in Mozambique is below the admin4 level, while the sub-area in all other countries is the admin4.
7The size of the sub-sample varies from 10 to 20 percent.
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Table 2: Comparison of key features across methods

ML method
Feature EBP Cubist XGBoost BRF
Prediction target Census data without

assets
Census data without

assets
Census data without

assets
Census data without

assets
Functional form Single linear function Multiple linear functions

(one at each decision tree
node)

Decision Trees Decision Trees

Assumed data
generation process

Specified linear model
with nested error

structure

Average linear prediction
based on specified

predictors at each decision
tree node

Sum of decision trees
based on specified

predictors and residuals

Sum of decision trees
based on specified

predictors and residuals

Objective (Loss)
function

Minimize mean squared
error of predictions

Minimize standard error
of dependent variable

when determining each
split. Minimize mean

squared error at each node

Minimize mean squared
error of predictions

Maximize penalized
heterogeneity in the

dependent variable when
determining each split.

The penalty favors
balanced splits.

Random effect
conditioned on
survey data

Yes No No No

Predictors used All selected by LASSO Selected through growing
decision trees

Selected through growing
decision trees

Selected through growing
decision trees from

randomly selected subset
of candidate predictors at

each node
Use different
subsamples of the
data for growing
trees and making
predictions

N/A No No Yes

Transparency/
Ease of use

More Less Less Less

Note: See Appendix C for more details.
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Table 3: Census summary statistics

Outcomes calculated
Year Areas Subareas Households Land area

(’000s km2)
Assets Poverty

Burkina Faso 2019 346 8,763 748,961 274 X
Madagascar 2017 1,515 14,412 5,007,602 597 X
Malawi 2018 420 18,700 796,925 118 X X
Mozambique 2017 1,282 67,239 6,133,769 802 X
Sri Lanka 2012 331 13,984 4,842,300 66 X
Tanzania 2012 169 13,857 2,612,518 947 X X
Vietnam 2019 711 11,159 2,322,464 332 X
Note: The table shows the number of areas and subareas, the number of households, the total land area in thousands
of square kilometers, and the outcomes calculated for different countries. Assets are available in all countries, while we
impute poverty into the census using concurrent household surveys in Malawi and Tanzania.

2.2 Geospatial features

We pull geospatial features from Google Earth Engine using Python and the earth engine api library. Table

A1 in the appendix lists the geospatial features used. Importantly, we often derive several additional statistics

from different indicators. For example, data on temperature is used to construct average temperature,

maximum temperature, and minimum temperature during the year, while data on pollution is used to

generate many distinct indicators.8 In addition, we also create features by aggregating to higher levels by

taking means. For example, we calculate mean urbanity at the admin3 level for all countries, and create

predictors with other variables in similar ways. By combining these features in different ways and across

different levels of aggregation, we end up with several hundred different predictive features. While we include

all of these features in the machine learning methods, we use lasso to select features for the EBP model,

following others (Engstrom et al., 2022; Masaki et al., 2022; Newhouse et al., 2025).9

We pull the most recent data available for all countries. Different geospatial features have different time

coverage, meaning we sometimes pull data from after the census. For example, our preferred land classification

data only goes back to 2019, so we extract 2019 data for the 2012 Tanzania census. We recognize that this is

not ideal and can result in additional stress-testing for the proposed methods (e.g., by introducing noise into

the data).
8More concretely, we construct weather variables separately by month throughout the year of the census, maximum and minimum
values throughout the same year, as well as climate-related variables that are long-run means and standard deviations from the
10 years prior to the census. We construct similar variables (except the long-run averages) for pollution.

9All three machine learning methods have their own regularization methods which make lasso redundant.
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2.3 Linear Empirical Best Predictor Models

We utilize the povmap package in R to generate the Empirical Best Predictor (EBP) estimates.10 This is an

updated version of the emdi package (Kreutzmann et al., 2019), which implements the models described

in Molina and Rao (2010) with additional features. We implement a “sub-area level model,” in which we

estimate the model at the sub-area level before aggregating to the area level for the final predictions. While

we include descriptions of the other estimators in Appendix C, we discuss some details of the sub-area model,

since it is one of the most common methods for small area estimation of welfare.

The subarea-level model is a model of the form:

G(ysar) = β1Xsar + β2Xar + ηar + εsar, (1)

where G(ysar) is a transformation of outcome y for sub-area s in area a in region r,11 Xsar is a vector of

sub-area-specific geospatial features, Xar is a vector of area-specific geospatial features – which may include

region dummies – ηar is an area-level random effect, assumed to be normally distributed and conditioned on

the sample data, and εsar is a classical error term assumed to be normally distributed. When predicting

assets, no transformation is used, implying that G (ysar) = ysar. When predicting poverty rates, the arcsin

transformation is used, implying that G (ysar) = arcsin
(
ysar

0.5)
.

Because the random effects are conditioned on the survey data, they are shrunk towards zero, with the

shrinkage factor depending on the relative estimated variances of the random effect η and the ideosyncratic

error term ϵ. After estimating the model’s coefficients, estimates for areas are generated by calculating

E
[
G−1 (ysar)

]
, conditional on estimated parameters β̂, σ̂2

η, and σ̂2
ϵ . We include both survey weights and

population weights, with the latter taken from WorldPop estimates rather than the censuses. The software

calculates measures of uncertainty using 100 parametric bootstrap replications. For more details on the

model, we refer readers to Tzavidis et al. (2018) and Molina and Rao (2010).

As with any regression model whose main goal is prediction, EBP models can be prone to overfitting. This is

especially true in our case, where we have several hundred possible features from which to choose. To help

prevent overfitting, we select features using lasso, implemented using the R package glmnet (Friedman et al.,

2010). We select the optimal lambda using cross-validation.
10The package is a spin-off of the EMDI package developed by Ifeanyi Edochie and colleagues and available for download at:

https://github.com/SSA-Statistical-Team-Projects/SAEplus.
11The level at which we are interested in predicting outcomes is the area, described above.
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2.4 Cubist

The second prediction method that we evaluate is Cubist regression, which is closely related to M5 regression

model trees and is derived from the work of Kuhn and Johnson (2013), Wang and Witten (1997), Quinlan

(2014), and Quinlan (1992). We implement it in R with the Cubist package (Kuhn et al. 2022), using a

procedure described in detail in Kuhn and Johnson (2013) and the publicly available source code. The input

is a set of training data with a dependent variable and set of candidate independent variables. The output is

a set of piecewise linear models. The procedure uses tree-based prediction methods to develop “rules”, which

correspond to leaves of the tree, and linear models are estimated for every rule. The user can set the number

of rules or allow the algorithm to determine the optimal number of rules based on cross-validation. In short,

the procedure estimates a set of linear models that are estimated on various subsets of the data, which are

selected to maximize the accuracy of the predictions. Further details on the Cubist algorithm can be found

in Appendix C.

2.5 XGBoost

The third estimator – Extreme Gradient Boosting – is a popular implementation of gradient boosted trees,

commonly called XGBoost (Chen and Guestrin 2016). XGBoost develops a set of regression forests, which

like the committees in the Cubist model sequentially predict residuals from the past regression. Appendix

C contains further details on the estimation of the algorithm; we just summarize the material found in the

online XGBoost documentation12 as well as in the original paper by Chen and Guestrin (2016).

2.6 Boosted Regression Forests

The last method we compare is Boosted Regression Forests (BRF), implemented in the GRF package for R

and described in the online documentation to that package as well as in Athey, Tibshirani, and Wager (2019).

Boosted Regression Forests are very similar to XGBoost, in that both estimate a series of regression forests

that successively predict the residuals from the previous round. However, BRF differs from XGBoost by

using one subsample of the data to grow trees and another to generate predictions at the leaves of the tree, a

procedure which is more theoretically sound. Each regression forest consists of a set of decision trees that the

algorithm grows on randomly selected subsets of the data. Further details on BRF are in Appendix C.
12https://XGBoost.readthedocs.io/en/stable/tutorials/model.html
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2.7 Uncertainty Estimates for ML Estimators

For EBP, we model welfare at the sub-area level, which is then aggregated up to the target area level. Because

the model specification contains a random effect at the target area level, this procedure accounts for the

hierarchical nature of the data. The procedure uses a parametric bootstrap to estimate uncertainty, drawing

from the estimated distributions for the random effects and the error terms, and accounting for the arcsin

transformation implemented for EBP. For the three ML estimators, we also estimate the models at the

subarea level.

While Friedberg et al. (2020) prove a central limit theorem for local linear forests that allows for the construction

of uncertainty estimates, variance estimation has not yet been implemented for Boosted Regression Forests.

As an alternative, we propose a non-parametric bootstrap procedure that draws from previous work on

residual bootstraps with hierarchical data (e.g. Luo and Lai (2021)).13

For subarea sa, consider the sample direct estimate of the outcome: ŷdirect
sa . In addition, there is the prediction

from the machine learning algorithm, ŷML
sa . With these two estimates, we calculate subarea-specific “residuals”

as:

R̂sa = ŷML
sa − ŷdirect

sa . (2)

We can likewise calculate residuals at the area level, by aggregating ŷML
sa and ŷdirect

sa to the area, weighting

by estimated population from WorldPop:

R̂a = ŷML
a − ŷdirect

a . (3)

The proposed bootstrap continues in two steps. First, note that we can only calculate this residual for

in-sample subareas and in-sample areas. After estimating predictions, we first calculate the residuals in

Equation 2. Then, we randomly draw one residual from the vector R̂sa for each in-sample subarea and add

that residual to the prediction: ŷML
sa + R̂sa. We do this sampling with replacement, for in- and out-of-sample

subareas.

We now have adjusted subarea predictions for all subareas. We aggregate all of these predictions to the area

level, using estimated population from WorldPop as weights. At the area level, we pursue a similar strategy,

but this time we draw area-level residuals, with replacement, for all areas, regardless of sample status. We
13We estimate the EBP model using REML as the default. We apply weights using the weights option in the lme function of the

nlme package and we rescale the weights to sum to the number of observations within group. When estimating BRF, the R
GRF package does not allow for aggregate variance estimates.
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repeat this residual bootstrap 1,000 times and the standard deviation of the estimate, which functions as our

estimate of the standard error.

Importantly, the drawing of observations from the vectors of residuals is done by weighting based on aggregate

sampling weights at the subarea and area level. As such, we are taking into account the fact that sampling is

informative and some (sub) areas have a higher probability of inclusion than others. Since only in-sample

(sub)areas are included in the calculation of the residual bootstrap vector, this method works when only a

household survey is available.

The proposed bootstrap consists of the following steps:

1. Predict an outcome (asset index or poverty) using XGBoost, BRF, or Cubist.

2. Calculate subarea residuals for in-sample subareas by differencing the prediction and the direct estimate

from the survey. Call this vector of residuals R̂sa = ŷML
sa − ŷdirect

sa .

3. Aggregate predictions to the area level, using estimated population from WorldPop as weights.

4. Calculate area residuals for in-sample subareas by differencing the prediction and the direct estimate

from the survey. Call this vector of residuals R̂a = ŷML
a − ŷdirect

a .

5. With original subarea predictions, bootstrap with replacement from R̂sa for all subareas, with sampling

probability determined through aggregated sampling weights.

6. Aggregate these new predictions to the area level.

7. Bootstrap with replacement from R̂a for all areas, with sampling probability determined through

aggregated samplign weights.

8. Repeat steps five through seven 1,000 times, saving new area estimates after each replication.

9. Calculate percentiles across the 1,000 replications.

Although residuals can only be calculated for sampled sub-areas and areas, these are used to generate

uncertainty estimates for both samples and non-sampled areas meaning that, unlike EBP – which conditions

the random effect on the sample for in-sample areas – estimated confidence intervals are approximately equal

in size for in-sample and out-of-sample areas

Importantly, the poverty rate is a variable bounded by zero below and by one above. In order to respect these

restrictions throughout the process, we do not estimate the poverty rate in levels. Instead, we estimate an

arcsin (square root) transformed poverty rate: ptransformed
sa = sin−1(√p

sa
). We carry over this transformation
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throughout the entirety of the bootstrap procedure, only back transforming it at the end, in step 9.14

2.8 Evaluating Performance

We have access to unit-level census data for seven countries. This allows us to calculate true sampling

distributions with the unit-level census data by simulating separate surveys and saving the results from each

iteration. In all countries, we treat subareas as enumeration areas. For each country, we design a sampling

scheme that mimics sampling of an actual household survey from that country. For example, we mimic the

sampling scheme used in the fifth Integrated Household Survey (IHS5) for Malawi. In all countries, we design

the sampling process in a two-stage manner, first stratifying, then drawing an “enumeration area” (which in

our case is always the lowest level of aggregation available in the census), before finally drawing households.

We independently draw 100 separate surveys, predict our outcomes of interest with each method, and then

evaluate the performance of the methods against the ground truth derived from the full unit-level census

data. We calculate the following statistics, where i indexes areas, ŷ refers to the predicted outcome for area i,

and ytruth
i : refers to the true value for area i:

• Correlation: We calculate both the Pearson correlation coefficient, r, and the Spearman (rank) correlation

coefficient, ρ. We present the means across all 100 independent samples:

1
100

100∑
s=1

rs and 1
100

100∑
s=1

ρs (4)

• Absolute deviation: This is defined for each area as
∣∣ŷsi − ytruth

si

∣∣. We present the average across all

areas and all simulations:

1
100N

100∑
s=1

N∑
i=1

∥∥ŷsi − ytruth
si

∥∥ (5)

• Squared deviation: This is defined for each area as
(
ŷsi − ytruth

si

)2. Similarly, we present the average

across all areas and simulations:

1
100N

100∑
s=1

N∑
i=1

(
ŷsi − ytruth

si

)2 (6)

• Width of confidence interval: For the EBP estimates, this is derived from the estimated MSE Êsi as
14We of course also back transform for the original point estimate.
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follows:

CIWebp = 3.92
100N

100∑
s=1

N∑
i=1

√
Êsi (7)

• For the three ML estimators, the width is defined as the average, across areas, of the difference between

the 95th and 5th percentiles of the bootstrap replications.

CIWm = 1
100N

100∑
s=1

N∑
i=1

(
ŷp95

si − ŷp5
si

)
(8)

• Coverage rate: This is defined as I
(
ytruth

i ∈ [CI lower
i , CIupper

i ]
)
, where I (·) is the indicator function

and CI refers to the confidence interval for a given area. We calculate the proportion of areas with true

values that fall within the confidence interval:

1
100N

100∑
s=1

N∑
i=1

I
(
ytruth

i ∈ [CI lower
i , CIupper

i ]
)

(9)

• Area Under the Curve (AUC). For each country, we construct an average Receiver Operating Charac-

teristic (ROC) curve for predicted area asset index values across the one hundred samples. To plot this

curve, we calculated true positive rates (TPR) and false positive rates (FPR) for fifty quantiles q of the

asset index distribution across areas, and take the average across samples. For method m and quantile

q,

TPRm,q =
100∑
s=1

∑N
i=1 I

(
ŷmsi < T ms

q

)
∗ I

(
ytruth

i < T truth
q

)
100 ∗

∑N
i=1 I

(
ytruth

i < T truth
q

) (10)

and

FPRm,q =
100∑
s=1

∑N
i=1 I

(
ŷmsi < T sm

q

)
∗ I

(
ytruth

i ≥ T truth
q

)
100 ∗

∑N
i=1 I

(
ytruth

i ≥ T truth
q

) (11)

Where ŷmsi represents the predicted asset index associated with method m, simulation s, and area i.

I () is an indicator function T ms
q is a “area poverty threshold” for quantile q, method m, and simulation

s, defined as the qth percentile of the predicted asset index distribution for method m and simulation s

across areas. T truth
q is the qth percentile of the true distribution of average asset indices across areas.
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Thus, the TPR represents the average (across simulations) share of “poor” areas in the census that are

correctly classified as poor by the predictions, while the FPR represents the average share of “non-poor”

areas that were incorrectly predicted to be poor. After plotting 50 points, one for each quantile, we

calculate the area under the curve (AUC), which is a summary measure of targeting accuracy for each

prediction. AUC values typically range from a low of 0.5, in which case the prediction is no more

accurate than a random guess, to a perfect score of 1.

• Poverty Targeting Simulations. Finally, to check the implications of using different estimates for

targeting purposes, we perform targeting simulations based on predicted poverty rates in Malawi and

Tanzania. The simulations are conducted for ten different population coverage thresholds ranging from

5 to 50 percent. At each threshold, predictions from each method are used to identify beneficiary areas

that will be given simulated transfers – Traditional authorities in Malawi and Districts in Tanzania.

Beneficiary areas are selected based on the predicted poverty rates obtained from each method, starting

with the area predicted to be poorest, until the covered population equals the population threshold.

Per capita expenditure is then increased by a constant amount, equal to ten percent of the poverty line,

for all households in beneficiary areas. This simulates each household obtaining a transfer proportional

to the size of their household.

We then report the poverty gap (P1) for each method m and population coverage rate q, defined as:

PGmq =
100∑
s=1

∑H
h=1 I

(
y′

qmsh < Z
)

∗
(

Z − y′
qmsh

)
∗ nh

100 ∗ Z ∗
∑H

h=1 nh

(12)

where H is the number of households in the census, nh is the size of household h, Z is the poverty line,

and y′
qmsh is the post-transfer per capita consumption for household h (in the census) for simulation s,

method m, and population coverage rate q. Therefore,

y′
qmsh = ytruth

h + 0.1 ∗ Z ∗ I (ŷmsh < Tmsq) (13)

Tmsq is the eligibility threshold for method m associated with population coverage rate q in simulation

s. This is equal to the qth percentile of the population-weighted distribution of ŷmsi, the area-level

predictions of the asset index generated by method m in simulation s. This ensure that q percent of

the population is covered by the hypothetical transfer program, regardless of the prediction method

used to identify beneficiary areas.
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For the poverty targeting simulations, we examine impacts on the poverty gap rather than the headcount

poverty rate (P0) because targeting areas based on their poverty headcount rates maximizes the impact of a

transfer program on the poverty gap (Besley and Kanbur, 1991; Kanbur, 1986). Reporting the headcount

poverty rate, on the other hand, could give a misleading picture of targeting effectiveness by rewarding

methods that successfully identify households whose predicted consumption is just under the poverty line

and would therefore exit poverty as a result of the transfer.

A key difference between the poverty targeting measure and all others previously considered is that it is

averaged across individuals rather than areas. This implicitly weights areas according to their population,

rewarding methods that more accurately estimate poverty rates for areas that have larger population.

Weighting areas according to their population during model estimation could yield estimates better suited for

the purpose of minimizing this indicator, and would be a useful topic for further research.

A final caveat is useful. The final performance of a specific ML method may depend on a combination of

different factors related to data sources (including data-specific features), prediction targets, the prediction

method, and performance metrics. While one method may work better for a specific application or according

to a specific evaluation metric, it may perform worse for another. To better focus the comparison, we present

in Table 2 a general comparison of the key features of the four methods that we use in this paper. To compare

their performance, we use the same prediction targets (i.e., imputing into census data without any assets

or poverty data) and performance metrics (as discussed above). However, they differ by design regarding

the functional form (including whether random effects are employed), (assumed) data generation process,

objective function, and other features such as how they select the predictor variables and whether they use

different subsamples of the data in growing trees and making predictions. Finally, these ML methods offer

various degrees of transparency and ease of use.

3 Results

We first examine the accuracy of the four candidate estimators, starting with basic average accuracy

statistics.15 Table 4 presents two separate indicators of accuracy: pearson and spearman (rank) correlations.

The values are averages across all areas and the 100 samples.

Although the relative performance of different methods varies across cases, consistent patterns emerge. When

looking at average Pearson correlations, XGBoost and Cubist nearly always outperform traditional EBP,

which has been the workhorse of small area prediction for decades. In all nine cases (seven for assets and two
15Section 3.3 considers alternative measures of accuracy
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for poverty), XGBoost improves upon EBP. In only one case, assets in Burkina Faso, does EBP improve upon

cubist regression. The performance of BRF relative to EBP is more mixed, with EBP notably outperforming

BRF when predicting the asset index in Burkina and poverty in Tanzania and giving comparably accurate

estimates for the asset index in Malawi and Sri Lanka. On the other hand, BRF estimates are more

accurate than EBP estimates for assets in Mozambique and Tanzania, as well as for poverty in Malawi.

When comparing XGBoost and Cubist regression, XGBoost generally produces the most accurate estimates,

although Cubist regression is more accurate when predicting assets in Tanzania.

When looking at averages across countries, the rankings across methods are the same for both assets and

poverty: XGBoost is the most accurate on average, followed by Cubist, BRF, and EBP. The magnitude of

the average differences are notable, as XGBoost is approximately six percentage points more accurate than

EBP for assets on average and around four percentage points more accurate than EBP for poverty when

averaging across the two countries with poverty estimates. These general patterns remain when looking at

Spearman rank correlations instead of Pearson correlations.

Rank correlations are an important measure of accuracy because they reflect targeting accuracy, or the ability

to discern the poorest areas. However, correlations do not typically capture bias, in the sense that correlations

are unchanged when a constant is added to all predictions. Because of this, Table 5 examines deviations from

truth, which captures bias. When looking at absolute and squared deviations, XGBoost and Cubist again

substantially outperform EBP and BRF, at least on average. XGBoost has lowest mean absolute error in five

of the nine cases and the lowest mean squared error in another six cases. EBP has the lowest errors in one

case (Madagascar assets) and Cubist has the lowest errors in several cases. When comparing XGBoost and

EBP, some of the differences are quite large. For example, in Malawi (assets), the MAE for XGBoost is 20

percent lower than that for EBP, similar to the results for poverty in the same country.

Likewise, comparing the values for MSE, XGBoost is 30 percent lower for assets and around 22 percent lower

for poverty in Malawi. Looking at the averages, both Cubist and XGBoost outperform EBP for assets and

poverty. This difference is particularly marked for poverty, with Cubist, in particular, greatly reducing the

MSE relative to EBP and XGBoost also providing a substantial reduction. These large differences are driven

by the fact that, when EBP performs better, it does so only slightly, whereas the two ML methods sometimes

perform much better than EBP.
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Table 4: Correlations across countries and methods

Pearson Spearman
EBP Cubist XGB BRF EBP Cubist XGB BRF

Panel A: Assets
Burkina Faso 0.743 0.734 0.850 0.694 0.715 0.698 0.812 0.683
Madagascar 0.875 0.907 0.910 0.906 0.795 0.847 0.851 0.849
Malawi 0.664 0.768 0.844 0.664 0.658 0.794 0.848 0.741
Mozambique 0.897 0.921 0.917 0.922 0.781 0.812 0.803 0.827
Sri Lanka 0.919 0.937 0.935 0.916 0.884 0.911 0.911 0.908
Tanzania 0.868 0.911 0.899 0.895 0.804 0.862 0.842 0.838
Vietnam 0.868 0.890 0.904 0.866 0.873 0.887 0.902 0.863
Average 0.833 0.867 0.894 0.838 0.787 0.830 0.853 0.816

Panel B: Poverty
Malawi 0.786 0.865 0.851 0.737 0.786 0.841 0.839 0.710
Tanzania 0.836 0.874 0.858 0.794 0.852 0.889 0.872 0.832
Average 0.811 0.870 0.854 0.766 0.819 0.865 0.855 0.771

Note: The first four columns present the simple mean of pearson correlation across simulations for each country. The last four columns present the
simple mean of spearman correlation across simulations for each country. The results are based on 100 simulations for each country and method.

20



Table 5: Accuracy across countries and methods

Mean absolute error Mean squared error
EBP Cubist XGB BRF EBP Cubist XGB BRF

Panel A: Assets
Burkina Faso 0.303 0.285 0.237 0.466 0.143 0.119 0.081 0.273
Madagascar 0.320 0.395 0.336 0.355 0.152 0.197 0.154 0.163
Malawi 0.440 0.369 0.348 0.462 0.373 0.294 0.254 0.532
Mozambique 0.278 0.198 0.200 0.191 0.115 0.065 0.067 0.066
Sri Lanka 0.159 0.134 0.135 0.164 0.043 0.031 0.033 0.058
Tanzania 0.413 0.345 0.336 0.366 0.224 0.156 0.154 0.179
Vietnam 0.236 0.215 0.204 0.228 0.106 0.092 0.076 0.102
Average 0.307 0.277 0.257 0.319 0.165 0.136 0.117 0.196

Panel B: Poverty
Malawi 0.180 0.123 0.142 0.180 0.047 0.028 0.037 0.049
Tanzania 0.085 0.069 0.073 0.090 0.015 0.009 0.010 0.013
Average 0.132 0.096 0.108 0.135 0.031 0.019 0.024 0.031

Note: The first four columns present the simple mean of the mean absolute error (MAE) across simulations for each country. The last four columns
present the simple mean of the mean squared error (MSE) across simulations for each country. The results are based on 100 simulations for each
country and method.
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So far, EBP is the only type of linear model we have evaluated. A popular alternative method was developed

in Elbers et al. (2003) and is widely known as ELL. A key difference between EBP and ELL is that ELL

does not condition the estimated random effect on the sample data. Partly because of that, ELL does not

assume that the error terms are distributed normally. Appendix Table A3 compares Pearson and Spearman

correlations for EBP and ELL. In all cases except assets in Tanzania, EBP outperforms ELL. On average, the

benefit from using EBP rather than ELL is moderate, in terms of correlation with the true estimates, equal

to 2.8 percentage points for assets and one percentage point for poverty. In two cases, Burkina Faso and

Vietnam, the differences are larger, at 9.2 and 6.3 percentage points, respectively. Overall, in these contexts,

EBP tends to generate more accurate estimates than ELL.

Accuracy of the prediction, however, is not the only measure of concern. It is also important to accurately

estimate measures of uncertainty, since these are often used to determine whether the estimates are sufficiently

reliable to publish publicly. Machine learning methods have been consistently shown to generate accurate

point estimates, but are less amenable to estimating uncertainty. Table 6 presents two key statistics related

to uncertainty, with the uncertainty measures calculated using a weighted two-stage residual block bootstrap,

as described in section 2.7. The first statistic is the coverage rate, which shows how often the true value

(from the census) lies within the estimated confidence intervals for a given prediction. We calculate coverage

rates for 95% confidence intervals, meaning that if the point and uncertainty estimates are accurate, the

coverage rate should be approximately 0.95. The second statistic is the total width of the confidence interval,

which is an indicator of the extent to which estimated uncertainty varies across estimation methods.

Coverage rates for the four estimators vary quite a bit depending on the context and the method. On average,

BRF is associated with the highest coverage rates, averaging 88.4 percent for assets and 88.8 percent for

poverty. This is partly because BRF is less accurate than the other ML methods on average, leading to

wider confidence intervals due to the use of a residual bootstrap. For assets, XGBoost has the second-highest

coverage rates at 87.2 percent, followed by Cubist at 84.7 percent. For poverty, the ranking is the same,

as XGBoost has a colverage rate of 85 percent with Cubist following at 82.3 percent. Coverage rates vary

by context, however. Uncertainty estimates when predicting assets in Tanzania, for example, appear to

be systematically underestimated for all estimators, especially for EBP at 39.1 percent. Figure A2 in the

Appendix shows that part of the reason for this may be a systematic underestimation of poverty across the

entire distribution, leading to decent correlation but poor coverage rates. We also note that the Tanzania

census is from 2012, while some of the geospatial features such as land classification are from 2019. As such,

we hesitate to put too much weight on the results from Tanzania. The coverage rate for Sri Lanka is also

low for EBP (68.4 percent). We encourage further research to better understand why coverage rates are
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particularly low in these cases and why all four methods seem to follow similar patterns in this regard.

In addition to coverage rates, Table 6 also presents the average width of confidence intervals (“CI width”).

As expected, the results demonstrate the trade-off between estimated precision, accuracy, and coverage

rates. BRF, despite being less accurate than XGBoost and Cubist on average, consistently yields the largest

confidence intervals, which explains its higher coverage rates. When estimating assets, average CI widths are

1.33 for BRF, as opposed to 0.97, 1.04, and 1.06 for XGBoost, Cubist, and EBP, respectively, though the

EBP mean is pulled down by the misleadingly low width in Malawi, Madagascar, and Sri Lanka. We note

that the higher coverage rates for XGBoost and Cubist come with lower estimated confidence intervals, in

general. In other words, at least in the current context, these two ML methods combined with our proposed

residual bootstrap procedure calculate smaller and more accurate confidence intervals for assets than EBP.

We see generally similar patterns of the ML methods when looking at poverty (Panel B). Both XGBoost and

Cubist consistently outperform EBP in terms of both coverage rates and the width of the confidence interval.

3.1 In-Sample and Out-of-Sample Estimates

We next break out measures of accuracy and precision separately for sampled and non-sampled areas. This is

important because prediction into non-sampled areas can be less accurate than prediction into sampled areas,

due to bias in the estimated model parameters.16 Since the share of target areas that are sampled can vary in

practical applications, in-sample and out-of-sample performance may be more relevant in particular contexts.

In each of the 100 samples per country, we randomly selected subareas, with probability proportional to size,

and then randomly selected households from within each subarea. We define an area as being “in sample” if

at least one subarea is sampled from within that area.

In general, there are three reasons why out-of-sample predictions could be less accurate than in-sample

predictions. The first is that the model is overfit, although this seems unlikely given the use of regularization

methods. For example, when implementing EBP, models are selected using LASSO to avoid overfitting.

Meanwhile, the ML estimators employ different methods to help avoid overfitting, such as estimating

regularized objective functions in the case of XGBoost and Cubist regression, and using a random subset

of data and predictors across trees and splits, in the case of BRF. Another more likely explanation is that

smaller areas – which are much less likely to appear in the sample – differ systematically from sampled

areas, leading to bias when extrapolating predictions. Third, for EBP estimates in particular, out-of-sample

estimates are less accurate due to the absence of sample data to condition on (Tzavidis et al., 2018).

16Pfeffermann and Sverchkov (2007) and Newhouse et al. (2025) demonstrate this for EBP models. We know of no evidence on
out-of-sample predictions for small area estimates when using BRF, Cubist, or XGBoost.

23



Table 6: Uncertainty statistics across simulations

Coverage rate Width of CI
EBP Cubist XGB BRF EBP Cubist XGB BRF

Panel A: Assets
Burkina Faso 0.928 0.730 0.917 0.899 1.331 0.811 0.951 1.552
Madagascar 0.691 0.953 0.947 0.974 0.799 1.453 1.301 1.596
Mozambique 0.863 0.711 0.730 0.756 1.778 0.858 0.828 1.414
Sri Lanka 0.684 0.948 0.923 0.954 0.731 1.017 0.923 1.109
Vietnam 0.913 0.904 0.873 0.915 0.667 0.566 0.521 0.834
Malawi 0.391 0.699 0.735 0.710 0.701 0.912 0.941 0.985
Tanzania 0.973 0.982 0.976 0.983 1.444 1.645 1.340 1.809
Average 0.777 0.847 0.872 0.884 1.064 1.037 0.972 1.329

Panel B: Poverty
Malawi 0.743 0.778 0.862 0.855 0.477 0.395 0.492 0.614
Tanzania 0.874 0.868 0.837 0.920 0.311 0.283 0.273 0.426
Average 0.809 0.823 0.850 0.888 0.394 0.339 0.382 0.520

Note: The first four columns present the coverage rate across simulations for each country. The coverage rate is defined as the proportion of
confidence intervals that contain the true value, derived from the census. The last four columns present the average width of the confidence interval
across simulations for each country. The results are based on 100 simulations for each country and method.
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We start with accuracy statistics in Table 7. The first four columns of Table 7 include in-sample areas only,

while the last four columns include out-of-sample areas. Statistics are means based on all 100 independent

samples, similar to previous results. Looking at in-sample areas, on average XGBoost is the most accurate

for assets on average, followed by Cubist, and finally by BRF and EBP. For poverty, Cubist is slightly more

accurate than XGBoost on average, followed by BRF and EBP. When considering both assets and poverty,

Cubist is more accurate than XGBoost in five of the nine cases, but the differences are never greater than

5.2 percentage points. On the other hand, XGBoost produces much more accurate estimates of assets than

Cubist in two cases: Burkina Faso (by 9.8 pp) and Mozambique (by 5.7 pp). EBP and BRF are always less

accurate than cubist or XGBoost with the exception of Madagascar, where BRF is slightly more accurate

than Cubist.

The right portion of Table 9 provides accuracy estimates for non-sampled areas. As expected, out-of-sample

estimates are consistently less accurate than in-sample estimates. On average, XGBoost estimates are most

accurate for assets, while Cubist is the most accurate for poverty. The relatively poor performance of EBP in

out-of-sample areas is consistent both with the linear nature of the model, given that the sampled areas are

systematically different than the non-sampled areas, as well as the lack of sample data on which to condition

the random effects.

Overall, a consistent pattern emerges both in and out-of sample. XGBoost and Cubist are generally the most

accurate, except for Sri Lanka and Mozambique where out-of-sample BRF predictions are most accurate by a

small margin. Meanwhile, either EBP or BRF is always the least accurate – sometimes by large margins. The

relative performance of XGBoost and Cubist varies across countries and outcomes. For example, XGBoost

estimates are much more accurate in Burkina Faso and Mozambique, but are slightly less accurate than

Cubist for assets and poverty in Malawi. For out of sample areas, XGBoost and BRF suffer the smallest

drop off in accuracy; out-of-sample correlations for assets are less than 8 percentage points lower, while that

number is 12 pp for EBP and 10 pp for Cubist.

Finally, to further investigate the differences between in and out-of-sample estimates, we examine how the

out-of-sample accuracy penalty changes for different methods when area fixed effects are included. Including

area fixed effects controls for fixed characteristics of areas, meaning that the remaining difference in accuracy

is attributable solely to these areas being excluded from the sample. Table 8 presents a set of regressions

where we estimate the difference in absolute deviation between areas that were included or excluded from the

sample. In each pair of columns, the first column includes only simulation fixed effects, while the second

column we also include area fixed effects that restrict identification to within-area changes in sample status

across simulations.
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Table 7: Correlations across countries and methods

In sample Out of sample
EBP Cubist XGB BRF EBP Cubist XGB BRF

Panel A: Assets
Burkina Faso 0.799 0.778 0.876 0.698 0.638 0.649 0.771 0.692
Madagascar 0.895 0.917 0.921 0.919 0.862 0.900 0.902 0.898
Malawi 0.712 0.846 0.903 0.818 0.649 0.747 0.830 0.624
Mozambique 0.950 0.960 0.958 0.955 0.846 0.883 0.876 0.888
Sri Lanka 0.931 0.944 0.942 0.921 0.832 0.880 0.875 0.883
Tanzania 0.899 0.926 0.917 0.913 0.762 0.867 0.837 0.829
Vietnam 0.878 0.893 0.906 0.868 0.614 0.595 0.741 0.698
Average 0.866 0.895 0.918 0.870 0.743 0.789 0.833 0.787

Panel B: Poverty
Malawi 0.817 0.924 0.872 0.883 0.782 0.840 0.843 0.668
Tanzania 0.899 0.921 0.907 0.840 0.669 0.727 0.697 0.663
Average 0.858 0.922 0.890 0.861 0.725 0.783 0.770 0.665

Note: The first four columns present the simple mean of pearson correlations for in-sample areas across simulations for each country. The last
four columns present the simple mean of pearson correlations for out-of-sample areas across simulations for each country. An area is defined as
in-sample if at least one of that area’s enumeration areas is in the sample on a given simulation.
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Table 8: Difference in accuracy within areas: in-sample vs. out-of-sample

EBP Cubist XGB BRF
(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Assets
Burkina Faso -0.088*** -0.106*** -0.074*** -0.051*** -0.055*** -0.016*** -0.089*** -0.018***

(0.013) (0.009) (0.011) (0.003) (0.009) (0.002) (0.014) (0.002)
Madagascar -0.017*** -0.010*** -0.021*** -0.003** -0.020*** -0.004*** -0.024*** -0.005***

(0.005) (0.001) (0.005) (0.001) (0.005) (0.001) (0.004) (0.001)
Malawi -0.164*** -0.058** -0.139*** -0.057** -0.118*** -0.040* -0.239*** -0.016**

(0.027) (0.028) (0.028) (0.023) (0.026) (0.021) (0.044) (0.006)
Mozambique 0.016*** -0.010*** 0.020*** -0.010*** 0.031*** -0.008*** 0.039*** -0.008***

(0.005) (0.001) (0.005) (0.001) (0.005) (0.001) (0.006) (0.0009)
Sri Lanka -0.083*** -0.041*** -0.053*** -0.026*** -0.060*** -0.024*** -0.067*** -0.012***

(0.010) (0.005) (0.007) (0.004) (0.008) (0.003) (0.013) (0.002)
Tanzania -0.064*** -0.011 -0.052*** -0.004 -0.040* 0.002 -0.035 0.002

(0.018) (0.008) (0.017) (0.006) (0.022) (0.004) (0.024) (0.004)
Vietnam -0.298*** -0.129*** -0.145** -0.056*** -0.150*** -0.071*** -0.189*** -0.055***

(0.112) (0.021) (0.059) (0.012) (0.030) (0.011) (0.029) (0.006)
All -0.040*** -0.024*** -0.032*** -0.013*** -0.024*** -0.010*** -0.042*** -0.008***

(0.005) (0.002) (0.004) (0.001) (0.004) (0.001) (0.006) (0.0006)
Panel B: Poverty

Malawi -0.066*** -0.013* -0.046*** -0.019** -0.042*** -0.006* -0.084*** -0.011***
(0.008) (0.008) (0.008) (0.009) (0.006) (0.003) (0.009) (0.003)

Tanzania -0.050*** -0.014*** -0.040*** -0.015*** -0.042*** -0.019*** -0.019** -0.009***
(0.012) (0.003) (0.010) (0.003) (0.010) (0.003) (0.007) (0.002)

All -0.062*** -0.014*** -0.044*** -0.017*** -0.042*** -0.012*** -0.068*** -0.010***
(0.007) (0.004) (0.006) (0.005) (0.005) (0.002) (0.007) (0.002)

Fixed effects:
Simulation Yes Yes Yes Yes Yes Yes Yes Yes
Area No Yes No Yes No Yes No Yes

Note: Standard errors are clustered at the simulation and area level. Each cell is a separate regression, where the dependent variable is absolute
deviation from truth for a given area/estimator and the independent variable is an indicator for whether the area appears in the sample in a
given simulation. The all rows estimate regressions with all countries simultaneously (separately for assets and poverty in Panel A and Panel B,
respectively).
* p<0.1 ** p<0.05 *** p<0.01
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The first column in each pair shows that the in-sample areas have higher accuracy (lower absolute deviations)

than the out-of-sample areas. The differences for EBP range from approximately 0.017 to 0.298. There are

several important differences in the second column when area fixed effects are included. First, the inclusion

of area fixed effects generally decreases the difference in accuracy based on sample status. In other words,

controlling for differences in characteristics across areas substantially shrinks the out-of-sample penalty for

accuracy. Some of these decreases are quite remarkable; for example, the penalty in Tanzania for assets

almost completely disappears for all four methods after taking into account area fixed effects.

A second notable finding from Table 8 is that, without taking into account area fixed effects, the out-of-sample

penalty on average for assets is largest for BRF and EBP (0.042 and 0.040, respectively), followed by Cubist

(0.032) and XGBoost (0.024). When controlling for area effects, however, differences in average accuracy across

methods are small, ranging from 0.008 for BRF to 0.024 for EBP. This suggests that, among the methods

considered, the ML methods are the best at predicting into out of sample areas that are systematically

different than those included in the sample. EBP may be hampered in this respect by the assumption of

a linear functional form, in addition to conditioning on the sample data. Overall patterns are similar for

poverty with respect to the comparison of the ML methods to EBP, though the penalty is lower for EBP

than for Cubist after taking into account area fixed effects.

Table 9 turns to uncertainty estimates and examines how coverage rates vary for in and out of sample areas.

For the three machine learning methods, coverage rates are higher for in-sample than out-of-sample areas.

For sampled areas, the three ML methods tend to yield higher coverage rates than EBP, with BRF generally

exhibiting the highest coverage rates, followed closely by EBP and then Cubist. EBP performs particularly

poorly when estimating the uncertainty of asset estimates in Tanzania. Low coverage rates can reflect either

inaccurate point estimates or consistent underestimates of uncertainty. However, in these cases, the low

coverage rates appear to result from the underestimation of uncertainty rather than inaccuracy, as Table 7

shows that EBP estimates of assets in Tanzania are only slightly less accurate than the other three methods.

For non-sampled areas, the average coverage rates for asset estimates are again highest for BRF at 85.2

percent, followed closely by XGBoost at 83.3 percent, with EBP and Cubist showing similar results of 80.3

and 80.6 percent. Average coverage for out of sample poverty rates has a wider variance across methods,

however, ranging from 89.8 percent for BRF to 73.1 percent for Cubist.

One disadvantage of the random effects block bootstrap is that it can only utilize data from sampled sub-

areas and areas, and therefore cannot distinguish between sampled and non-sampled areas when estimating

uncertainty. Despite the presence of sample weights, the sample systematically under-represents less populous

areas and extrapolations into non-sampled areas are less accurate than estimates for sampled areas. Yet this
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Table 9: Coverage across countries and methods

In sample Out of sample
EBP Cubist XGB BRF EBP Cubist XGB BRF

Panel A: Assets
Burkina Faso 0.903 0.768 0.938 0.916 0.968 0.670 0.884 0.872
Madagascar 0.673 0.959 0.953 0.976 0.702 0.949 0.944 0.972
Malawi 0.777 0.766 0.775 0.833 0.917 0.676 0.702 0.707
Mozambique 0.577 0.937 0.901 0.938 0.721 0.952 0.930 0.960
Sri Lanka 0.919 0.920 0.892 0.928 0.876 0.806 0.762 0.839
Tanzania 0.343 0.723 0.754 0.728 0.519 0.637 0.685 0.662
Vietnam 0.974 0.983 0.976 0.983 0.920 0.955 0.926 0.951
Average 0.738 0.865 0.884 0.900 0.803 0.806 0.833 0.852

Panel B: Poverty
Malawi 0.757 0.857 0.899 0.952 0.734 0.727 0.839 0.794
Tanzania 0.878 0.910 0.883 0.933 0.865 0.753 0.715 0.886
Average 0.818 0.884 0.891 0.942 0.799 0.740 0.777 0.840

Note: The first four columns present the average coverage rate (using 95-percent confidence intervals) for in-sample areas across simulations for
each country. The last four columns present the the average coverage rate for out-of-sample areas across simulations for each country. An area is
defined as in-sample if at least one of that area’s enumeration areas is in the sample on a given simulation.
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added source of model error is not reflected in uncertainty estimates. This partly contributes to the pattern of

lower coverage rates out of sample than in-sample observed for the machine learning methods in Table 9. There

are possible alternatives, such as using a parametric bootstrap – which is how EBP calculates uncertainty – or

explicitly modeling heteroscedasticity, as in Elbers et al. (2003). However, the random effect block bootstrap

does reasonably well in the simulations reported above, with out-of-sample coverage rates averaging 85 percent

for BRF and 84 percnet for XGBoost for assets, which is higher than the 80 percent average coverage rate for

EBP. For poverty, however, the average for EBP exceeds that for XGboost by a couple of percentage points.

3.2 Accuracy for Poorer and Richer Areas

The previous sections examined accuracy both overall and separately for in- and out-of-sample areas. Figure 1

shows how accuracy varies for poorer and wealthier areas. The left y-axis represents mean squared deviation

across samples for each area. The dotted black line shows the kernel density estimate of the true value,

represented on the right y-axis. Several patterns emerge. First, predictions are most accurate in areas where

the sample density is highest, where the dotted black lines are higher.

Second, there are notable differences in how accuracy varies across the distribution by method. BRF, for

example, gives particularly inaccurate predictions at the tails in several cases, such as Burkina Faso, Malawi,

Sri Lanka and Vietnam. EBP also predicts poorly in the right tail in Madagascar and Mozambique, but is

also notably more accurate than several of the ML methods in many of the left tails. On the other hand,

EBP is less accurate in the denser parts of the distribution in Mozambique, Tanzania, and Vietnam. Thus,

the relatively poor performance of BRF appears to reflect poor predictive performance at the tails where

there is little data, perhaps due to the use of different subsets of the data for tree building and leaf estimation.

Meanwhile, the linear functional form associated with EBP, while also problematic at the tails in some cases,

also appears to reduce accuracy through much of the distribution in cases such as Mozambique and Tanzania.

Third, areas of low density in the sample do not always correspond to smaller areas. In Madagascar and

Mozambique, for example, the fewest observations are in the upper tail of the distribution, where the asset

index is highest. These areas correspond to larger, more urban areas, with high populations. This also means

that these areas are much more likely to appear in the sample (since probability of inclusion is related to size).

Nevertheless, we see the least accurate predictions in these areas because they are systematically different

from most areas in the sample. This raises the possibility of revising sampling strategies to oversample the

tails of the distribution, in terms of the outcome of interest, in addition to more populous areas. More

generally, we encourage future research to explore alternative sampling strategies as data fusion techniques

grow in popularity and ease of use.
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Figure 1: Deviations from truth across the distribution (assets)

Note: Figures show lowess-smoothed plots of squared deviation relative to truth, across all 100 simulations, separately for all
seven countries’ asset indices. The dashed line shows the density of the true asset index for each country.
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Figure A2 in the appendix shows predicted-true plots for all nine cases. In many cases, as expected, predictions

are overestimated towards the left and underestimated towards the right, with the exception of Tanzania

assets where predictions are consistently underestimated except at the smallest values. Overall, it is difficult

to make out consistent patterns, except in a few cases. In Burkina Faso, XGBoost and Cubist predict much

more accurately than BRF, and the same is true towards the upper tail for assets in Malawi and the lower

tail for assets in Vietnam. For poverty in Malawi, XGBoost and Cubist give much more accurate predictions

than EBP and BRF both at the lower and upper tails.

3.3 Alternative measures of accuracy

The previous section only considered a limited set of accuracy measures: pearson and rank correlations, mean

absolute error, and mean squared error. But it is often unclear how these translate into targeting outcomes,

which are a common application of small area estimation. To investigate this further, this section examines

an alternative measure of targeting accuracy for asset predictions, the area under the curve (Hanna and

Olken, 2018). In addition, we simulate the poverty impacts of a hypothetical transfer program based on the

poverty estimates for Malawi and Tanzania obtained by different methods.

Figure 2 shows the estimates for area under the curve (AUC) for assets in all seven countries. The curve in

question is a receiver operator characteristic (ROC) curve, applied to target areas, as described in section 2.

Figure 2 indicates that either XGBoost or Cubist has the highest area under the curve in all cases. EBP

and BRF are typically associated with the lowest score, though which is lower depends on the country. In

summary, the AUC results confirm that XGBoost and Cubist deliver better targeting outcomes than EBP

and BRF.

Finally, we show the results of a poverty targeting simulation in Figure 3. The y-axis represents the poverty

gap (P1) associated with basing targeted geographic transfers on different prediction methods. In Malawi,

basing transfers on the XGBoost rankings reduces poverty the most irrespective of the share of the population

targeted, with the only exception being 20 percent, where Cubist performs slightly better. This is followed by

Cubist, until 35 percent of the population is targeted, at which point EBP does slightly better at reducing

the poverty gap. Ranking areas by BRF is consistently least effective. For Tanzania, the results are different:

Ranking areas using EBP estimates reduces poverty severity the most until 20 percent of the population is

covered, at which point XGBoost does slightly better, though EBP and XGBoost then flip spots repeatedly

over the higher values.
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Figure 2: Asset index targeting

Note: The figure plots the True Positive Rate (Y-axis) against the False Positive Rate (x-axis) for every percentile of the mean asset score distribution . The values are simple
means across 100 simulations. For example, a value of 0.05 on the x-axis indicates that the false positive rate is 5 percent for that particular percentile threshold, and the value of
the y-axis is true positive rate at that percentile threshold. The dashed lined indicates expected results if ordering were completely randomized.
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Figure 3: Poverty targeting results

Note: For Malawi and Tanzania, we rank areas based on their estimated poverty rate. We then make transfers, equal to
10-percent of the per-capita poverty line, to X% of the population, shown on the x-axis. We rank areas by poverty rates and
make transfers until X% of the population is reached. The y-axis presents the resulting, country-level poverty gap rates after the
transfers, as a simple average over all 100 simulations.

There are important caveats to these results. First, this targeting exercise transfers 10 percent of the

per-capita poverty line. Higher (or lower) transfers could lead to different results as the decrease in the

poverty gap hinges on the distribution of households just below the poverty line. Second, we assume that

this transfer is given to all households in a targeted area, meaning non-poor households also receive the

transfers. An alternative option would be to target based on sub-area estimates instead of area estimates

(which is feasible with geospatial data) or means testing households in targeted areas (which is not feasible

without large expenditures or recent household data on all households). Finally, this ranking is done using

the official poverty rates from each country. Another alternative would be to target a different poverty rate

(e.g. 25-percent headcount poverty in Malawi instead of the 50-percent current rate).

3.4 Which predictors are important for prediction?

This section turns to briefly examining the “importance” of different types of geospatial predictors in predicting

asset wealth. Doing so can shed light on which geospatial indicators are most important to include as candidate

predictors in models. We assess the importance of predictors in two ways. First, we examine the share of
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samples for which different types of predictors are selected when implementing LASSO to select variables for

the EBP model. Predictors are grouped into eight categories: Weather and climate variables, Vegetation

(specifically the Normalized Difference Vegetation Index), Land Cover Classification (LC), modeled population

estimates, pollution indicators, distance to different locations, and latitude and longitude (GPS). The results

are shown in Table 10.

When predicting assets, Pollution, Distance, and Land Cover are selected most frequently, more than 96

percent of the time. Weather and vegetation are also quite common, at 90 and 88 percent, respectively.

GPS and population are less common, as they are only selected 58 and 52 percent of the time, respectively.

Patterns are fairly similar for poverty prediction. Vegetation, Land cover, and distance to major cities are

also frequently selected. Weather-related variables, however, are only selected in 65 percent of the samples

and the GPS indicators (latitude and longitude) are almost never selected.

Selection by LASSO is a coarse measure of the importance of predictor variables. We therefore perform

Shapley decompositions of the predictors in one sample per country and indicator using the XGBoost results,

following Lundberg et al. (2019). For each sub-area, this procedure calculates the average of the absolute

value of changes in the prediction of assets or poverty due to each predictor variable, taken over all possible

orderings of the predictors in the tree. These average Shapley values are then averaged across all sub-areas

in the sample. The variables with the largest Shapley values for each country and indicator are listed in

Table 11 .

In nearly all cases, the landcover shares (coverfraction) stand out as key variables in the XGBoost models.

These include the fraction of the sub-areas classified as urban, shrub, grass, bare, trees, crops, and water. On

average these variables and their higher-level aggregates account for almost half of the top 10 variables for

asset prediction and 60 percent of the top 10 variables for poverty prediction. Pollution variables such as

ozone (o3) and nitrogen dixode (no2) also appear in several cases, as do vegetation (ndvi), population (pop),

weather (starting with weather) and distance to cities (variables starting with distto). In general, the listed

variables tend to be correlated with population density, which is in turn correlated with asset ownership and

poverty.
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Table 10: Variable selection through lasso across simulations

Weather NDVI LC Population Pollution Distances GPS Regions
Panel A: Assets

Burkina Faso 0.99 0.54 0.99 0.00 1.00 0.97 0.29 1.00
Madagascar 0.77 0.79 1.00 0.77 1.00 0.99 0.68 1.00
Malawi 0.99 0.99 0.74 0.53 0.99 0.96 0.14 0.99
Mozambique 0.81 1.00 1.00 0.72 0.98 0.99 0.97 0.99
Sri Lanka 0.74 1.00 1.00 0.23 0.88 1.00 0.98 1.00
Tanzania 0.99 0.97 1.00 0.56 1.00 0.99 0.02 1.00
Vietnam 1.00 0.90 1.00 0.81 1.00 0.90 0.99 1.00
Average 0.90 0.88 0.96 0.52 0.98 0.97 0.58 1.00

Panel B: Poverty
Malawi 0.37 1.00 0.74 0.52 1.00 0.71 0.05 1.00
Tanzania 0.93 0.79 1.00 0.07 1.00 0.98 0.00 1.00
Average 0.65 0.90 0.87 0.30 1.00 0.84 0.03 1.00

Note: The columns list the different types of candidate variables used in estimation. For each country, we calculate the proportions of simulations in which
lasso selects at least one of each variable type for use in EBP. GPS variables include the longitude and latitude of each subarea centroid, while region is
defined separately by country, but is generally dummy variables for the strata used in sampling (usually admin2, sometimes also stratified by urban/rural).
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Table 11: Feature importance in XGBoost: Shapley values

Burkina Faso Madagascar Malawi Mozambique Sri Lanka Tanzania Vietnam

Panel A: Assets
pop (levels) urbancoverfraction urbancoverfractiondist urbancoverfractiondist urbancoverfraction shrubcoverfraction urbancoverfractionprov

urbancoverfraction urbancoverfractiondist area urbancoverfraction shrubcoverfractionloc grasscoverfraction cropscoverfraction
pop (log) o3prov urbancoverfraction area ntl ndviaveragemin grasscoverfraction

shrubcoverfraction grasscoverfractiondist ndvi2 ndvi2 ndviyearmaxloc disttogampaha waterseasonalcover-
fractiondist

popdist no2 pop (log) shrubcoverfraction shrubcoverfractiondist ndviaveragemindsd barecoverfraction
disttogaoua barecoverfractionprov grasscoverfraction grasscoverfraction shrubcoverfraction ndviyearmin ndvi2prov

disttobanfora disttosambava shrubcoverfractiondist pop (log) o3loc ntldist treecoverfractionprov
no2 urbancoverfractionprov shrubcoverfraction cropscoverfraction treecoverfraction ndviyearmindsd lon
so2 shrubcoverfractiondist cropscoverfraction grasscoverfractiondist disttopemba hchodsd grasscoverfractiondist

barecoverfraction lon ndvi11 weathermeandist so2 barecoverfraction weather9
Panel B: Poverty

urbancoverfraction urbancoverfractiondist
urbancoverfractiondist urbancoverfraction
urbancoverfractionprov weather5dist

ndvi3prov disttododoma
grasscoverfractiondist weather11prov

ndvi3dist grasscoverfractiondist
grasscoverfraction weather5prov

disttoilala grasscoverfraction
weather1prov grasscoverfractionprov

shrubcoverfractiondist shrubcoverfractiondist

Note: The table shows the top ten variables for each country, based on the mean SHAP value across one simulation. The variables are not necessarily the same across
countries, but the variables are listed in order of importance, with the most important variable listed first. Variable names followed by an integer represent the month of the
year (e.g. ndvi2 is NDVI in February). Variable names with suffixes (e.g. dist, prov, or loc) indicate variables aggregated to a higher level (in the examples given, district,
province, and localidade, respectively). Area refers to the geographic area of the subarea. Finally, suffixes of min and max refer to the minimum and maximum values of the
variable in the location throughout the year. All of the coverfraction variables indicate land classifications, defined as the proportion of the given area covered by the given
land type.
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3.5 Additional geospatial predictors

Previous sections reported results on the accuracy of point and uncertainty estimates generated using an

identical set of publicly available geospatial indicators, as described in section 2.2. However, these are not

the only freely available geospatial features. In addition, the predictor variables used were never interacted

with any other variables; this may be particularly problematic for EBP, which assumes a linear functional

form, while the ML methods are flexible enough to implicitly take into account possible interactions. This

section therefore extends the previous analysis by examining the extent to which adding additional features

and interactions improves the accuracy of predictions. For additional features, we use the MOSAIKS features

(Rolf et al., 2021), which are derived from raw satellite imagery. In addition, we experimented by interacting

all variables with the share of land classified as urban (at the sub-area level).

Table 12 shows the results comparing EBP (which is most likely to change when including interactions) and

XGBoost, our overall preferred method in terms of accuracy.17 Somewhat surprisingly, adding MOSAIKS

features to the set of candidate predictors reduces the accuracy of EBP predictions on average, for both

assets and poverty. For XGBoost, adding MOSAIKS features reduces correlation for assets on average

by 1.6 percentage points and increases correlations for poverty by 0.3 percentage points. Adding urbanity

interactions slightly increases the accuracy of EBP estimates for assets and slightly decreases it for poverty.

For XGBoost, adding interactions with urbanity as candidate variables increases the accuracy of the average

asset estimates by 0.9 pp and decreases the accuracy of the average poverty estimates by 0.8 pp. In short,

neither adding MOSAIKS features nor interactions has a consistently positive impact on accuracy. In general,

impacts on accuracy are small, although adding MOSAIKS leads to a sizeable decline of approximately 5

percent points in accuracy when predicting wealth in Burkina Faso, and a sizable increase of about the same

amount in Vietnam when using EBP.

Finally, Table 13 reports uncertainty measures when MOSAIKS features plus interactions are added. Compared

with Table 6, average coverage rates for assets fall 3 pp for EBP, increase 3 pp for Cubist regression, and

1 pp for XGBoost and BRF. For poverty, average coverage rates hardly change for EBP and BRF, decline

about 1 pp for Cubist, and increase nearly 3 pp for XGBoost. For XGBoost and BRF, including additional

candidate variables appears to have modestly positive impacts on coverage rates, despite the limited impacts

on the accuracy of the point estimates. However, this increase seems to come from larger confidence intervals;

the width of the confidence interval in the last four columns is markedly larger than those in Table 6.

17We choose to present only these two methods for parsimony in the table.
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Table 12: Comparing candidate feature choices

(1) (2) (3)
Basic variables MOSAIKS variables MOSAIKS and interactions

EBP XGB EBP XGB EBP XGB
Panel A: Assets

Burkina Faso 0.743 0.850 0.699 0.809 0.689 0.840
Madagascar 0.875 0.910 0.872 0.905 0.866 0.907
Malawi 0.664 0.844 0.541 0.811 0.544 0.833
Mozambique 0.897 0.917 0.893 0.917 0.902 0.919
Sri Lanka 0.919 0.935 0.923 0.934 0.930 0.937
Tanzania 0.868 0.899 0.879 0.906 0.891 0.912
Vietnam 0.868 0.904 0.911 0.916 0.911 0.930
Average 0.833 0.894 0.817 0.886 0.819 0.897

Panel B: Poverty
Malawi 0.654 0.868 0.631 0.878 0.613 0.858
Tanzania 0.836 0.858 0.845 0.858 0.855 0.861
Average 0.745 0.863 0.738 0.868 0.734 0.860

Note: The first two columns present the simple mean of pearson correlation across simulations for each country using all candidate features
as well as interactions between features and urbanity. The last two columns present the same correlations but restricting the candidate
feature set by excluding all mosaiks features and interactions. The results are based on 100 simulations for each country and method.
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Table 13: Uncertainty statistics across simulations, all features and interactions

Coverage rate Width of CI
EBP Cubist XGB BRF EBP Cubist XGB BRF

Panel A: Assets
Burkina Faso 0.913 0.806 0.929 0.902 2.275 1.492 1.793 2.818
Madagascar 0.626 0.940 0.962 0.991 0.722 1.298 1.442 1.984
Malawi 0.809 0.769 0.723 0.738 1.633 1.080 0.919 1.278
Mozambique 0.641 0.953 0.913 0.971 0.687 1.060 0.887 1.348
Sri Lanka 0.909 0.930 0.930 0.919 0.607 0.718 0.686 1.001
Tanzania 0.344 0.713 0.721 0.771 0.627 0.940 0.951 1.181
Vietnam 0.980 0.994 0.978 0.988 1.281 1.572 1.201 1.723
Average 0.746 0.872 0.880 0.897 1.119 1.166 1.126 1.619

Panel B: Poverty
Malawi 0.744 0.763 0.872 0.831 0.464 0.452 0.495 0.575
Tanzania 0.871 0.865 0.884 0.943 0.297 0.297 0.295 0.515
Average 0.808 0.814 0.878 0.887 0.380 0.374 0.395 0.545

Note: The first four columns present the coverage rate across simulations for each country. The coverage rate is defined as the proportion of
confidence intervals that contain the true value, derived from the census. The last four columns present the average width of the confidence
interval across simulations for each country. The results are based on 100 simulations for each country and method. Candidate features include all
variables used in the main specifications, along with mosaiks and interactions between features and urbanity.
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4 Conclusion

This paper evaluates the use of three tree-based machine learning techniques and linear empirical best

predictor (EBP) models for the purposes of contemporaneous small area estimation of wealth and poverty

using household census data and publicly available geospatial indicators from seven countries. In addition to

evaluating accuracy, we propose and implement a bootstrap algorithm to estimate the uncertainty associated

with machine learning predictions and evaluate its performance using real-world data. Two of the three tree-

based machine learning methods evaluated – Cubist Regression and Extreme Gradient Boosting (XGBoost)

significantly outperformed the empirical best predictor model traditionally used for small area estimation

(Molina and Rao 2010; Tzavidis et al. 2018). A third machine learning method, BRF, generated estimates

comparable to EBP. Both point estimates and uncertainty estimates generated using Cubist regression models

are generally a bit less accurate than those generated using XGBoost.

The results make a strong case for the use of XGBoost or Cubist regression in cases where the sample includes

a sufficiently large number of subareas, those subareas comprise a small share of subareas in the population,

and transparency and parsimony are not first-order concerns. In general, in these contexts, it does not

appear that the benefit of EBP, in terms of conditioning on the sample data, outweighs the restrictions

of its linear function form. In addition, the acccuracy of BRF estimates in this context likely suffers from

using random subsets of predictors and different subsets of the data for training and prediction. Nonetheless,

appropriate diagnostics, such as estimating linear models, interpreting the results of machine learning models,

and evaluating results using cross-validation techniques, remain crucial in practice. Furthermore, accuracy is

not always the most important factor when selecting methods. In cases where transparency and parsimony

are important, or the number of sampled subareas is small, linear mixed EBP models or Cubist regression

with a small number of rules are viable options. We do not claim that these results hold for all types of

samples and settings. While recent research has made some progress towards combining tree-based machine

learning with conditional random effects (Krennmair and Schmid, 2022; Messer and Schmid, 2024), these have

yet to gain widespread acceptance and use. Our results highlight potential benefits from this line of research.

One notable finding, which has also been observed in other contexts, is the significantly greater accuracy

of estimates in sampled areas than non-sampled areas. However, XGBoost appears to be markedly more

accurate than other methods in predicting out-of-sample estimates. These differences diminish when comparing

accuracy estimates within the same area across simulations. This shows how the tendency for samples to

under-represent less densely populated areas can lead to less accurate predictions out of sample, even when

taking sampling probabilities into account. This finding underscores the benefits of including all target areas
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in the sample. When this is not possible, however, XGBoost appears to offer a notable advantage when

predicting into non-sampled areas. Further research could explore whether and how re-weighting the sample

can improve the accuracy of out-of-sample predictions. Related to this is the difficulty of predicting accurately

at the tails of the welfare distribution, suggesting potential benefits from oversampling tails. Further research

can also explore how the relative accuracy of different methods depends on the size and structure of the

sample, as this analysis only considers one type of sample.

A key contribution of the paper is to evaluate the accuracy of the uncertainty estimates generated by a

two-stage residual block bootstrap. These estimates perform reasonably well on average, as coverage rates

average approximately 89 percent for BRF, 87 percent for XGBoost, and 84 percent for Cubist, all of which

exceed the 78 percent average for EBP. Overall, the results indicate that the combination of Extreme Gradient

Boosting or Cubist Regression, the random effect block residual bootstrap, and publicly available geospatial

data offer a practical way to improve on EBP estimates when geolocated survey data are available.

While our results offer useful input for poverty estimates at a more disaggregated level that can result in

more cost-effective budget planning, particularly in contexts where recent census data are unavailable, it

should be noted that these results may not extend to other welfare outcomes. In addition, while we include

seven different countries, it is not possible to claim generalizability in all contexts. The relative performance

of different machine learning methods may well depend on the specific outcomes and model features under

consideration. For example, one method may work well for poverty but may work less well for food insecurity

or children’s malnutrition status. The performance of different methods will also depend on the nature

of the sample data. We encourage further research on comparing the performance of different methods,

contexts, and outcomes. Further research could also shed light on whether models are sufficiently stable to

use for intertemporal prediction. It is also useful to evaluate the performance of these methods in richer data

contexts where we can compare models using satellite-based variables versus those using variables coming

from household surveys and censuses.

Last but not least, a practical challenge with implementing machine learning methods involves limitations

with analytical capacity of national statistical offices. We note that in these contexts, using existing tools to

investigate modeling issues is good practice and should be done as part of the standard data checking and

model exploration process before employing more advanced ML methods. For these methods to be employed

more widely in a responsible way to better address data gaps, we call for more efforts by various stakeholders

to improve local analytical capacity. For example, donors can support leading experts to jointly collaborate

with national statistical staff to produce statistical training and better results. Providing ungated, public

access to the latest research results and well-documented software packages (e.g., the EMDI and povmap
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R packages) are critical for supporting these efforts. This is consistent with the Sustainable Development

Goals’ (Goal 17) recent focus on enhancing capacity-building support to developing countries to significantly

increase the availability of high-quality, timely, and reliable data.
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Appendix A - Additional tables and figures

Table A1: Geospatial features

Indicator Source
Population WorldPop

Precipitation TerraClimate
Temperature TerraClimate
Nightlights NOAA VIIRS
Land cover EU Copernicus
Elevation Conservation Science Partners

NDVI MODIS
Pollution measures EU Copernicus

Distance to key cities1 Collected by authors
Mosaiks2 Rolf et al. (2021)

1 We collect the (approximate) location of all of the Admin 2 or Admin 1 capitals
(depending on the country and number of admin areas) and calculate the distance
from each enumeration area in the population.
2 Mosaiks is only used in an alternative specification. The main results do not
include the Mosaiks features.
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Figure A1: Deviations from truth vs true values, out-of-sample areas only

Note: All figures are smoothed conditional means of the mean squared deviation across 100 independent samples (first y-axis) on truth (x-axis), with means restricted to only
samples in which an area does not appear (out-of-sample areas). The kernel density estimate refers to the density of truth, which is on the x-axis.
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Table A2: Optimal hyperparameters from cross validation

Assets Poverty
BFA MDG MWI MOZ LKA TZA VNM MWI TZA

Panel A: Cubist
Committees 100 100 100 50 100 100 100 100 50
Neighbors 0 0 9 0 9 9 0 9 9

Panel B: XGBoost
Rounds 100 200 200 200 100 200 100 200 100
Max. depth 4 4 6 6 4 6 4 6 4
η 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.3 0.15
γ 1 1 1 1 0 1 0 1 0
Min. child weight 0 0 0 0 0 0 0 0 0
Col sample by tree 0.8 0.9 0.9 0.8 0.8 0.8 0.8 0.9 0.8
Subsample 0.9 0.9 0.8 0.8 0.8 0.9 0.9 0.8 0.8

Note: The table shows the optimal hyperparameters from a single random sample for each country. Due to computing time, we use the same hyperparameters
across all simulations for a given country. The column names are the country’s three-digit ISO code. The first two rows show the hyperparameters for Cubist, the
next seven for XGBoost. For XGBoost, η is the learning rate and γ is the minimum loss reduction required to make a further partition. Due to the implementation
of BRF, the hyperparameters differ for each simulation so are not shown here.
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Figure A2: Predicted-true plots across areas, scatter plot

Note: In all figures, areas are ordered by true value, which is displayed on the x-axis. The y-axis presents the estimated value for each given area.
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Table A3: Correlations across countries and methods, EBP vs. ELL

Pearson Spearman
EBP ELL EBP ELL

Panel A: Assets
Burkina Faso 0.743 0.651 0.715 0.607
Madagascar 0.875 0.870 0.795 0.787
Malawi 0.664 0.641 0.658 0.623
Mozambique 0.897 0.892 0.781 0.773
Sri Lanka 0.919 0.900 0.884 0.866
Tanzania 0.868 0.877 0.804 0.812
Vietnam 0.868 0.805 0.873 0.810
Average 0.833 0.805 0.787 0.754

Panel B: Poverty
Malawi 0.786 0.672 0.786 0.696
Tanzania 0.836 0.818 0.852 0.842
Average 0.811 0.745 0.819 0.769

Note: The first four columns present the simple mean of pearson correlation across sim-
ulations for each country. The last four columns present the simple mean of spearman
correlation across simulations for each country. The results are based on 100 simula-
tions for each country and method.
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Appendix B - Calculating the asset index and imputing poverty

B1 Assets

For all countries, we compute an asset index using the assets available in the unit-level census data. Importantly,

while we calculate the asset index for the census to calculate ground truth, we also calculate the asset index

independent on each random sample. In other words, we do not use the asset index values from the entire

census when computing the sub-area asset index during the simulations. In all cases, we use principal

components analysis and allow for just one factor, which we use as the asset index.

In the following sections, we discuss which assets we use in each country.

B1.1 Burkina Faso

We use the following assets to calculate the asset index in Burkina Faso:

• Radio ownership

• TV ownership

• Landline ownership

• Mobile phone ownership

• Fridge ownership

• Computer ownership

• Stove ownership

• Electric stove ownership

• Bike ownership

• Motorcycle ownership

• Tricycle ownership

• Car ownership

• Canoe ownership

• Cart ownership

• Camel ownership

• Horse ownership

• Donkey ownership

• Lighting type (dummies)

• Energy type (dummies)

• Toilet type (dummies)

• Walls type (dummies)

• Roof type (dummies)

• Floor type (dummies)

B1.2 Madagascar

We use the following assets to calculate the asset index in Madagascar:
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• Radio ownership

• TV ownership

• VCR ownership

• Oven ownership

• Fridge ownership

• Washing machine ownership

• Dryer ownership

• Computer ownership

• Internet access

• Landline ownership

• Mobile phone ownership

• Car ownership

• Air conditioning ownership

• Scooter/motorcycle ownership

• Bike ownership

• Energy type (dummies)

• Toilet type (dummies)

• Walls type (dummies)

• Roof type (dummies)

• Floor type (dummies)

• Housing type

B1.3 Malawi

We use the following assets to calculate the asset index in Malawi:

• Radio ownership

• TV ownership

• VCR/DVD ownership

• Mobile phone ownership

• Computer ownership

• Fridge ownership

• Bike ownership

• Table ownership

• Bed ownership

• Iron ownership

• Solar panel ownership

• Lamp/torch ownership

• Car ownership

• Walls type (dummies)

• Roof type (dummies)

• Floor type (dummies)

• Dwelling type (dummies)

• Housing ownership

B1.4 Mozambique

We use the following assets to calculate the asset index in Mozambique:
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• Radio ownership

• TV ownership

• Landline ownership

• Mobile phone ownership

• Computer ownership

• Internet access

• Iron ownership

• Stove ownership

• Electric or gas stove ownership

• Fridge ownership

• Car ownership

• Motorcycle ownership

• Bike ownership

• Walls type (dummies)

• Roof type (dummies)

• Floor type (dummies)

• Dwelling type (dummies)

B1.5 Sri Lanka

We use the following assets to calculate the asset index in Sri Lanka:

• Radio ownership

• TV ownership

• Landline ownership

• Mobile phone ownership

• Desktop computer ownership

• Laptop computer ownership

• Internet access

• Fax machine ownership

• Electricity access

• Water type (dummies)

• Toilet type (dummies)

• Walls type (dummies)

• Roof type (dummies)

• Floor type (dummies)

• Dwelling type (dummies)

• Number of rooms in dwelling (different rooms)

B1.6 Tanzania

We use the following assets to calculate the asset index in Tanzania:

• Radio ownership

• TV ownership

• Landline ownership

• Mobile phone ownership

• Car ownership

• Bike ownership
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• Motorcycle ownership

• Computer ownership

• Fridge ownership

• Iron ownership

• House ownership

• Power tiller ownership

• Wheelbarrow ownership

• Plough ownership

• Walls type (dummies)

• Roof type (dummies)

• Floor type (dummies)

B1.7 Vietnam

We use the following assets to calculate the asset index in Vietnam:

• TV ownership

• Radio ownership

• Computer ownership

• Mobile ownership

• Fridge ownership

• Washing machine ownership

• Water heater ownership

• Air conditioning ownership

• Motorbike ownership

• Bike ownership

• Boat ownership

• Car ownership

• Dwelling type (dummies)

• Year dwelling built (dummies)

• Bedrooms in dwelling

• Walls type (dummies)

• Roof type (dummies)

• Floor type (dummies)

• Toilet type (dummies)

• Source of lighting (dummies)

• Source of cooking energy (dummies)

• Source of water (dummies)

B2 Poverty

We impute welfare into the 2018 Malawi census using the 2019 Integrated Household Survey (IHS) and

into the 2012 Tanzania census using the third wave of the National Panel Survey (2012-2013). Both the

census and the household surveys include information on household assets and key household demographics;

in addition, the surveys have information on expenditures/consumption. We select the variables that are

common to both datasets (separately by country) and then use lasso to select the most predictive variables
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to use in the imputation procedure. The assets available in the household survey are more numerous than

those available in the census, meaning the matched sets of assets are those listed above.

The post-lasso regression results for both countries are in Table B1. We remove all selected region/district

dummies from the table for parsimony. The r-squared is quite high considering these estimates are at the

household level; in Malawi the regression explains around 43% of total variation in per capita expenditures

while in Tanzania the regression explains around 46% of the total variation.

We predict welfare directly into the census using the results in Table B1. We then use the census-derived

expenditures to calculate a poverty line using the same quantile as the poverty rate in the household survey.

In Malawi, this quantile is approximately 0.5. In Tanzania, this quantile is approximately 0.21. In other

words, by construction, the poverty rate in the census is equal to the poverty rate in the household survey.
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Table B1: Welfare imputation regressions

Malawi Tanzania
Head male -0.068

(0.012)
Head educ primary 0.088

(0.013)
Head educ secondary 0.14

(0.018)
Head educ university 0.224

(0.037)
Dwelling owned -0.116 -0.229

(0.014) (0.021)
Dwelling permanent 0.05

(0.028)
Dwelling semi-permanent 0.022

(0.02)
Rooms in dwelling -0.066

(0.005)
Roof grass -0.087 0.064

(0.017) (0.055)
Room cement 0.605

(0.534)
Roof metal 0.109

(0.055)
Roof other 0.23

(0.083)
Wall mud -0.028

(0.027)
Wall concrete 0.015 0.025

(0.028) (0.03)
Wall bricks -0.026 -0.053

(0.018) (0.023)
Floor cement 0.126

(0.018)
Floor wood 0.503

(0.377)
Floor tile 0.378

(0.082)
Floor easrth -0.241

(0.025)
Floor other 0.167

(0.132)
Mobile ownership 0.095 0.229

(0.012) (0.022)
Radio ownership 0.071 0.105

(0.012) (0.018)
TV ownership 0.069 0.176

(0.024) (0.029)
Computer ownership 0.348 0.345

(0.038) (0.05)
Fridge ownership 0.199 0.086

(0.03) (0.034)
Bike ownership 0.027 -0.07

(0.012) (0.019)
Table ownership 0.052

(0.013)
Bed ownership 0.181

(0.014)
Iro ownership 0.11 0.131

(0.017) (0.023)
Solar panel ownership 0.033

(0.014)
CD/DVD ownership 0.043

(0.025)
Car ownership 0.366 0.446

(0.041) (0.053)
Cycle ownership 0.159

(0.035)
Land ownership -0.153

(0.022)
Wheelbarrow ownership 0.012

(0.063)
Plough ownership -0.047

(0.037)
Intercept 12.425 13.528

(0.046) (0.064)
District/region dummies 31 total 24 total
r-squared 0.431 0.461
Robust standard errors are in parentheses.
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Appendix C - Methods

This section describes the details of the different machine learning methods. Due to computing time, we

tune hyperparameters once and use these in all simulations for a given country and outcome. The optimal

hyperparameters are in Table A2.

C1 Cubist

The Cubist algorithm proceeds as follows:

1. Form a decision tree by conducting an exhaustive search over the predictor space and

training set samples. Splits are determined by minimizing the standard error of the dependent

variables within groups. In mathematical terms, splits are chosen recursively to maximize the reduction

in a measure of error. Defining S as the entire set of data and S1, ..., Sp as the P subsets of the data

after splitting, the algorithm maximizes

reduction = SD(S) −
P∑

i=1

ni

n
SD(Si), (14)

where SD is the standard deviation, n is the number of sample observations considered, and ni is the

number of sample observations in partition i. In other words, the algorithm identifies the set of splits

that maximizes the reduction in the weighted average, across child nodes, of the standard deviations

within the nodes. Splitting ceases, and the node becomes a leaf, when the maximum residual falls below

a minimum tolerance level or when the number of training cases falls below a minimum threshold.18

2. Estimate and simplify linear models at each node. At each node of the tree, a linear model is

estimated using only the variable attributes used to split the sub-tree above the node. In other words,

the model for the first split from the top will be a bivariate regression with a single predictor. At

subsequent nodes further down the tree, the set of candidate variables expands to include the set of all

variables used for splitting to that point.

Not all candidate variables are actually used in the models. In particular, the resulting linear models

are simplified to avoid overfitting, by greedily dropping variables to minimize "adjusted error rate".

The adjusted error rate is the mean absolute error multiplied by a term to penalize models with many
18The minimum tolerance level is set at five percent of the standard deviation of the dependent variable in the full training data

(Wang and Witten, 1997). The minimum number of observations is set to 10 percent of the sample if the sample is less than
2000 observations, or 20 if the sample is more than 2000 observations.
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variables, defined as:

adjusted error rate = n∗ + p

n∗ − p

n∗∑
i=1

|yi − ŷi(Xi)| , (15)

where n∗ is the number of observations in the training data at the node used to build the model; p

is the number of parameters, equal to the number of independent variables plus one; and ŷi(Xi) is

the predicted value from the model given a set of predictor variables Xi. The variable that leads to

the largest reduction in the adjusted error rate is removed, sequentially, until the adjusted error rate

increases when removing any of the remaining predictors. Removing attributes inevitably increases

mean absolute error but also reduces the multiplication factor n∗+p
n∗−p , which may reduce the adjusted

error rate.

Finally, the procedure performs an outlier check, defining outliers as cases where residuals are greater

than five times the average absolute value of the model residuals for that node. At each node, before

finalizing the model, outliers are eliminated from the estimation sample and the model is re-estimated

and re-simplified.

3. Prune the rules. Each leaf of the tree is translated into a set of "rules" based on the sequence of

splitting conditions that lead to the leaf. For example, a rule based on a leaf with two branches above

it would consist of three conditions, for example X1 > 10, X2 < 2 and X3 = 1. These rules are then

"pruned", a process that eliminates conditions that are harmful or not useful for predicting the full set

of training data. To measure prediction accuracy, the algorithm uses the adjusted error rate defined in

Equation 15, applied to the full set of training data.

As a first step, the algorithm calculates smoothed predictions across the various conditions of a rule,

which corresponds to particular nodes along the tree that lead to a leaf, using the following formula

[@hastie1990shrinking]:

Ŷpar = aŶkid + (1 − a)Ŷpar, (16)

where Ŷpar is the prediction of the model estimated at the parent node and Ŷkid is the prediction of the

model estimated at the current node. a is equal to
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a = var(epar) − cov(ekid, epar)
var(epar − ekid) , (17)

where epar are the model residuals from the parent node and ekid are the model residuals from the

current node, for training cases under consideration at the current node. All rule pruning is based on

these smoothed predictions.

The second step is to eliminate all conditions (nodes) that increase in the adjusted rate, defined as in

Equation 16 except taken over the full training sample. The program identifies the condition (node)

that, when removed, leads to the largest decline in the adjusted rate. If removing that condition does

not increase the adjusted error rate, it is removed. This proceeds sequentially until no condition can be

removed without increasing the adjusted error rate.

The third step repeats step 2, except that conditions are removed as long as they do not raise the

adjusted error rate by more than 0.5 percent. This additional step is implemented to further simplify

the tree structure. Finally, if necessary, conditions are further pruned until the number of remaining

rules is equal to the maximum number of rules specified by the user.

4. Generate smoothed models for each rule. For each rule, a model is created by coefficients at the

leaves with all the models above it on the path to the initial split, similar to Equation 16. The model

coefficients for each rule (leaf) are averaged according to the following formula:

β̂par = aβ̂kid + (1 − a)β̂par. (18)

5. This procedure smooths the model coefficients by collecting the sequence of linear models at each node

into a single, smoothed representation of the models. The algorithm adjusts the final model so that all

continuous cutpoints match those present in the data, by changing the cutpoint to equal the closest

value in the data.

The Cubist software also allows an option to estimate "committees," which are sets of Cubist models

that successively correct errors in the previous estimates, similar to boosting. In other words, each

committee produces a series of rules and associated models that iteratively predict the errors from the

previous committeeś prediction. The package uses cross-validation to determine the optimal number of
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rules and committees.

The Cubist method, like the other machine learning methods, is associated with several hyperparameters.

We opt to tune the hyperparameters just once, using a random survey sample drawn in the exact same

way as described above in order to cut down on total computation time. We then keep this set of

hyperparameters constant through all survey draws. In addition, we tune the hyperparameters via cross

validation, hand coding the folds to draw all subareas in a given area to help preserve the hierarchical

nature of the data and prevent some information leakage across folds. Table A1 in the appendix shows

the optimal hyperparameters for cubist that we use in all sample iterations.

C2 XGBoost

Extreme gradient boosting estimates a function that predicts the dependent variable yi as a function of the

set of independent variables xi. This function is defined as the sum of a series of individual decision tree

functions. In mathematical terms, for a single observation i of a set of predictors xi,

ŷi = ϕ(xi) =
K∑

k=1
fk(xi), fk ∈ F, (19)

where K is the number of trees estimated in the model and fk is a decision tree function mapping xi to ŷi in

the functional space F , which is the set of all possible decision trees. f1, ..., fK is defined as the minimum of

the following objective function of ϕ(xi):

obj(ϕ) =
n∑

i=1
l (yi, ϕ(x0)) +

K∑
k=1

ω(fk), (20)

where l is a differential convex loss function that measures the distance between the predicted value and the

training value and ω(fk) is a regularization term that penalizes model complexity, defined below.

Because the algorithm is optimizing over a set of feasible functions fk, instead of parameters, it is not possible

to use standard optimization tools. Instead, the algorithm proceeds by estimating each individual fk(xi) tree

function in a “greedy” manner (Friedman 2001). Specifically, the algorithm identifies a tree ft(xi) at step t

to minimize the following objective function:
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obj(t) =
n∑

i=1
l
(

yi, ŷ
(t−1)
i + ft(xi)

)
+ ω(ft). (21)

This sequentially adds the ft that provides the largest improvement in performance according to the objective

function, Equation 20, given the previous round’s prediction, ŷ
(t−1)
i . ŷ0

i is set to zero so the first iteration

generates the tree f1(xi) that minimizes
∑n

i=1 l (yi, ft(xi)) + ω(ft).

The mean value of the asset index is continuous when aggregated to the subarea level – the level at which we

estimate welfare – we use mean-squared error as the loss function, thus:

l (yi, ŷi + ft(xi)) =
(

ŷ
(t−1)
i + ft(xt) − yi

)
(22)

The resulting objective function at step t, after removing constants, becomes

obj(t) =
n∑

i=1

[
2

(
ŷ

(t−1)
i − yi

)
ft(xi) + ft(xi)2

]
+ ω(ft), (23)

which the algorithm minimizes at each step by choosing ft(xi).

Regularization prevents overfitting and, in a general case, is defined as

ω(fi) = γT + λ

2

T∑
j=1

w2
j , (24)

where T represents the number of leaves on tree fk and wj is the score assigned to leaf j. λ and γ are tuning

parameters controlling the extent of regularization. We follow the default and set λ = 1 and γ = 0 for

estimation. Table A1 in the appendix shows the optimal hyperparameters for XGBoost that we use in all

sample iterations; we use default values for any unlisted hyperparameters.
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C3 Boosted Regression Forests (BRF)

To grow a tree, the algorithm first takes a random sample of the data. The share of the data selected is a

parameter determined by cross-validation. The algorithm then begins the tree at the root node with this

random sample, and recursively splits the data to create child nodes. At each split, the algorithm randomly

selects a subset of the predictor variables as splitting candidates. For each splitting candidate, the algorithm

considers all the possible values these variables take on in the data. For all values taken on by all the splitting

candidates, the algorithm first considers whether the split would meet three basic eligibility criteria:

1. That the resulting children have a minimum number of observations that exceeds a minimum absolute

node size parameter

2. That each child contains more than a minimum threshold fraction of the parent observations, to prevent

splits that are too imbalanced.

3. That the split improves heterogeneity in outcomes as defined in equation (19) below

The minimum node size and balance thresholds are parameters estimated through cross-validation, as

described below. Of the remaining candidate splits, the algorithm selects the threshold that maximizes

heterogeneity in the average outcome across the child nodes. All observations with variables below that

threshold are assigned to child 1 and all observations with variables above that threshold are assigned to

child 2. For boosted regression forests, heterogeneity in the split, denoted H, is defined as:

H = NC1NC2

N2
P (ȳC1 − ȳC2)2 −

(
IP

NC1
+ IPNC2

)
, (25)

where NC1, NC2, and N2
P are the number of observations in child 1, child 2, and the parent node, respectively,

and ȳC1 and ȳC2 are the average values of the predicted outcome in the children. IP is an imbalance penalty

parameter, selected through cross validation, that favors more balanced splits.

To simplify the process, BRF automates the tuning of hyperparameters using cross-validation. However, for

computational reasons, the hyperparameters are estimated once in the first boosting step.
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