class: center, middle, inverse, title-slide .title[ # Air pollution and agricultural productivity in a developing country ] .author[ ### Joshua D. Merfeld
KDI School and IZA ] .date[ ### 2024-05-10 ] --- <style type="text/css"> /* Table width = 100% max-width */ /* .remark-slide table{ width: 100%; } */ /* Change the background color to white for shaded rows (even rows) */ .remark-slide thead, .remark-slide tr:nth-child(n) { background-color: #A7A9AC; } .remark-slide table { background-color: #A7A9AC; } tfoot { font-size: 80%; } table{ border-collapse: collapse; border-color: transparent; background-color: #A7A9AC; } /* .hljs-github { background-image: url("logo.png"); background-position: bottom left; background-size: 10%; } .inverse { background-image: url(""); background-position: bottom left; background-size: 10%; } */ .title-slide { background-image: url("logo_title.png"); background-position: bottom left; background-size: 20%; } .gray { color: #7F7F7F; } </style> ## This paper <br> - Effects of pollution on agricultural productivity in India - Previous evidence from gold mines (Aragon and Rud 2016) and workers in California (Graff Zivin and Neidell 2012) - Some evidence coal pollution can actually be beneficial (Sanders and Barreca, 2022)<br><br> - Higher exposure to pollution leads to lower agricultural productivity - Exposure defined as wind direction from coal plants towards villages - Also instrument for particulate matter 2.5 (PM 2.5) --- ## This paper <br> - Larger effects in areas growing more labor-intensive crops - Effects through labor?<br><br> - Compounding effects of shocks - Weather shocks + pollution = worse than either on its own<br><br> - Coal pollution seems worse than other forms of pollution - Same increase -> larger effects from coal pollution --- ## Outline <br> - General idea and data<br><br> - Estimating effects of pollution on agricultural productivity<br><br> - Heterogeneity, including by labor intensities of crops<br><br> - Overall pollution vs. pollution specifically from coal<br><br> - Wrapping up --- ## Outline <br> - General idea and data<br><br> - .gray[Estimating effects of pollution on agricultural productivity]<br><br> - .gray[Heterogeneity, including by labor intensities of crops]<br><br> - .gray[Overall pollution vs. pollution specifically from coal]<br><br> - .gray[Wrapping up] --- ## General idea <br> - Identify high-pollution locations based on where coal plants open or will open - Coal plants open in areas where pollution is already high<br><br> - Plot wind direction each day - Exposure means wind blowing from high-pollution locations to village (within 30km)<br><br> - Identification comes from changes in exposure to pollution *due to within-village variation* in annual wind direction --- ## Data sources <table style='NAborder-bottom: 0;border-bottom: 0;border-bottom: 0; font-family: "Arial Narrow", "Source Sans Pro", sans-serif; margin-left: auto; margin-right: auto;' class=" lightable-classic-2"> <thead> <tr> <th style="text-align:left;"> </th> <th style="text-align:center;"> source </th> <th style="text-align:center;"> geographic coverage </th> <th style="text-align:center;"> temporal coverage </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;width: 2cm; "> shapefile </td> <td style="text-align:center;width: 5cm; "> Asher et al. (2021) </td> <td style="text-align:center;width: 3cm; "> India </td> <td style="text-align:center;width: 3cm; "> </td> </tr> <tr> <td style="text-align:left;width: 2cm; "> coal plants </td> <td style="text-align:center;width: 5cm; "> Global Energy Monitor </td> <td style="text-align:center;width: 3cm; "> global </td> <td style="text-align:center;width: 3cm; "> yearly </td> </tr> <tr> <td style="text-align:left;width: 2cm; "> wind </td> <td style="text-align:center;width: 5cm; "> NCAR </td> <td style="text-align:center;width: 3cm; "> global </td> <td style="text-align:center;width: 3cm; "> daily </td> </tr> <tr> <td style="text-align:left;width: 2cm; "> pollution </td> <td style="text-align:center;width: 5cm; "> Hammer et al. (2020) </td> <td style="text-align:center;width: 3cm; "> global </td> <td style="text-align:center;width: 3cm; "> monthly </td> </tr> <tr> <td style="text-align:left;width: 2cm; "> agriculture </td> <td style="text-align:center;width: 5cm; "> Gangopadhya et al. (2022) </td> <td style="text-align:center;width: 3cm; "> India </td> <td style="text-align:center;width: 3cm; "> two seasons/year </td> </tr> <tr> <td style="text-align:left;width: 2cm; "> weather </td> <td style="text-align:center;width: 5cm; "> TerraClimate </td> <td style="text-align:center;width: 3cm; "> global </td> <td style="text-align:center;width: 3cm; "> monthly </td> </tr> <tr> <td style="text-align:left;width: 2cm; "> crops </td> <td style="text-align:center;width: 5cm; "> Monfreda et al. (2008) </td> <td style="text-align:center;width: 3cm; "> global </td> <td style="text-align:center;width: 3cm; "> 2000 (year) </td> </tr> </tbody> <tfoot><tr><td style="padding: 0; " colspan="100%"> <sup></sup> Global Energy Monitor: globalenergymonitor.org/projects/global-coal-plant-tracker.</td></tr></tfoot> <tfoot><tr><td style="padding: 0; " colspan="100%"> <sup></sup> NCAR: climatedataguide.ucar.edu/.</td></tr></tfoot> <tfoot><tr><td style="padding: 0; " colspan="100%"> <sup></sup> TerraClimate: www.climatologylab.org/terraclimate.html</td></tr></tfoot> </table> --- ## Wind direction - first 100 days of 2010 in Guna district (MP) <img src="index_files/figure-html/windbase-1.png" width="100%" /> --- ## Wind direction - first 100 days of 2010 in Guna district (MP) <img src="index_files/figure-html/wind-1.gif" width="100%" /> --- ## Where do coal plants open? -- <table> <thead> <tr> <th style="empty-cells: hide;border-bottom:hidden;" colspan="1"></th> <th style="border-bottom:hidden;padding-bottom:0; padding-left:3px;padding-right:3px;text-align: center; " colspan="2"><div style="border-bottom: 1px solid #ddd; padding-bottom: 5px; ">1991 census</div></th> <th style="border-bottom:hidden;padding-bottom:0; padding-left:3px;padding-right:3px;text-align: center; " colspan="2"><div style="border-bottom: 1px solid #ddd; padding-bottom: 5px; ">2001 census</div></th> </tr> <tr> <th style="text-align:left;"> </th> <th style="text-align:center;"> (1) </th> <th style="text-align:center;"> (2) </th> <th style="text-align:center;"> (3) </th> <th style="text-align:center;"> (4) </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;width: 8cm; "> pop (log) </td> <td style="text-align:center;width: 4cm; "> -0.107 </td> <td style="text-align:center;width: 4cm; "> 0.291*** </td> <td style="text-align:center;width: 4cm; "> 0.241*** </td> <td style="text-align:center;width: 4cm; "> 0.128 </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> </td> <td style="text-align:center;width: 4cm; "> (0.097) </td> <td style="text-align:center;width: 4cm; "> (0.083) </td> <td style="text-align:center;width: 4cm; "> (0.079) </td> <td style="text-align:center;width: 4cm; "> (0.080) </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> area (log) </td> <td style="text-align:center;width: 4cm; "> 0.240*** </td> <td style="text-align:center;width: 4cm; "> -0.110 </td> <td style="text-align:center;width: 4cm; "> 0.133* </td> <td style="text-align:center;width: 4cm; "> 0.119 </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> </td> <td style="text-align:center;width: 4cm; "> (0.065) </td> <td style="text-align:center;width: 4cm; "> (0.088) </td> <td style="text-align:center;width: 4cm; "> (0.079) </td> <td style="text-align:center;width: 4cm; "> (0.085) </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> ag productivity </td> <td style="text-align:center;width: 4cm; "> </td> <td style="text-align:center;width: 4cm; "> </td> <td style="text-align:center;width: 4cm; "> 0.092 </td> <td style="text-align:center;width: 4cm; "> 0.121 </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> </td> <td style="text-align:center;width: 4cm; "> </td> <td style="text-align:center;width: 4cm; "> </td> <td style="text-align:center;width: 4cm; "> (0.070) </td> <td style="text-align:center;width: 4cm; "> (0.097) </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> pollution </td> <td style="text-align:center;width: 4cm; "> </td> <td style="text-align:center;width: 4cm; "> </td> <td style="text-align:center;width: 4cm; "> 0.612*** </td> <td style="text-align:center;width: 4cm; "> 0.530** </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> </td> <td style="text-align:center;width: 4cm; "> </td> <td style="text-align:center;width: 4cm; "> </td> <td style="text-align:center;width: 4cm; "> (0.201) </td> <td style="text-align:center;width: 4cm; "> (0.256) </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> has plant? </td> <td style="text-align:center;width: 4cm; "> </td> <td style="text-align:center;width: 4cm; "> 14.842*** </td> <td style="text-align:center;width: 4cm; "> </td> <td style="text-align:center;width: 4cm; "> 13.574*** </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> </td> <td style="text-align:center;width: 4cm; "> </td> <td style="text-align:center;width: 4cm; "> (0.568) </td> <td style="text-align:center;width: 4cm; "> </td> <td style="text-align:center;width: 4cm; "> (0.158) </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> observations </td> <td style="text-align:center;width: 4cm; "> 209,110 </td> <td style="text-align:center;width: 4cm; "> 209,110 </td> <td style="text-align:center;width: 4cm; "> 408,913 </td> <td style="text-align:center;width: 4cm; "> 415,334 </td> </tr> </tbody> </table> --- ## Outline <br> - .gray[General idea and data]<br><br> - Estimating effects of pollution on agricultural productivity<br><br> - .gray[Heterogeneity, including by labor intensities of crops]<br><br> - .gray[Overall pollution vs. pollution specifically from coal]<br><br> - .gray[Wrapping up] --- ## Empirical strategy <br> First stage `$$pm_{it} = \alpha_{i} + \gamma_{t} + \phi wind_{it} + \psi f(weather_{it}) + \varepsilon_{it}$$` Second stage `$$yield_{it} = \delta_{i} + \eta_{t} + \beta \hat{pm}_{it} + \theta f(weather_{it}) + \upsilon_{it}$$` - i indexes villages - t indexes time (year) - standard errors clustered at village throughout - common use of stars (one indicates 0.10) throughout --- ## Identification - Common question: **what if wind direction itself affects yields?** --- ## Wind direction - first 100 days of 2010 <img src="index_files/figure-html/id1-1.png" width="100%" /> --- ## Naive regression - yield on pollution <table> <thead> <tr> <th style="text-align:left;"> </th> <th style="text-align:center;"> (1) </th> <th style="text-align:center;"> (2) </th> <th style="text-align:center;"> (3) </th> <th style="text-align:center;"> (4) </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;width: 8cm; "> particulate matter </td> <td style="text-align:center;width: 4cm; "> -0.042*** </td> <td style="text-align:center;width: 4cm; "> -0.045*** </td> <td style="text-align:center;width: 4cm; "> -0.008** </td> <td style="text-align:center;width: 4cm; "> -0.041*** </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> (log PM 2.5) </td> <td style="text-align:center;width: 4cm; "> (0.003) </td> <td style="text-align:center;width: 4cm; "> (0.003) </td> <td style="text-align:center;width: 4cm; "> (0.003) </td> <td style="text-align:center;width: 4cm; "> (0.003) </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> weather </td> <td style="text-align:center;width: 4cm; "> No </td> <td style="text-align:center;width: 4cm; "> Yes </td> <td style="text-align:center;width: 4cm; "> Yes </td> <td style="text-align:center;width: 4cm; "> No </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> weather (expanded) </td> <td style="text-align:center;width: 4cm; "> No </td> <td style="text-align:center;width: 4cm; "> No </td> <td style="text-align:center;width: 4cm; "> Yes </td> <td style="text-align:center;width: 4cm; "> No </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> weather (expanded, bins) </td> <td style="text-align:center;width: 4cm; "> No </td> <td style="text-align:center;width: 4cm; "> No </td> <td style="text-align:center;width: 4cm; "> No </td> <td style="text-align:center;width: 4cm; "> Yes </td> </tr> <tr> <td style="text-align:left;width: 8cm; font-weight: bold;"> fixed effects: </td> <td style="text-align:center;width: 4cm; font-weight: bold;"> </td> <td style="text-align:center;width: 4cm; font-weight: bold;"> </td> <td style="text-align:center;width: 4cm; font-weight: bold;"> </td> <td style="text-align:center;width: 4cm; font-weight: bold;"> </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> village </td> <td style="text-align:center;width: 4cm; "> Yes </td> <td style="text-align:center;width: 4cm; "> Yes </td> <td style="text-align:center;width: 4cm; "> Yes </td> <td style="text-align:center;width: 4cm; "> Yes </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> year </td> <td style="text-align:center;width: 4cm; "> Yes </td> <td style="text-align:center;width: 4cm; "> Yes </td> <td style="text-align:center;width: 4cm; "> Yes </td> <td style="text-align:center;width: 4cm; "> Yes </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> observations </td> <td style="text-align:center;width: 4cm; "> 1,266,922 </td> <td style="text-align:center;width: 4cm; "> 1,266,922 </td> <td style="text-align:center;width: 4cm; "> 1,266,922 </td> <td style="text-align:center;width: 4cm; "> 1,266,922 </td> </tr> </tbody> </table> - Likely endogenous - Upward biased? Downard biased? --- ## Reduced form - wind and yield <table> <thead> <tr> <th style="text-align:left;"> </th> <th style="text-align:center;"> (1) </th> <th style="text-align:center;"> (2) </th> <th style="text-align:center;"> (3) </th> <th style="text-align:center;"> (4) </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;width: 8cm; "> wind days </td> <td style="text-align:center;width: 4cm; "> -0.0078*** </td> <td style="text-align:center;width: 4cm; "> -0.0065*** </td> <td style="text-align:center;width: 4cm; "> -0.0051*** </td> <td style="text-align:center;width: 4cm; "> -0.0053*** </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> </td> <td style="text-align:center;width: 4cm; "> (0.0007) </td> <td style="text-align:center;width: 4cm; "> (0.0007) </td> <td style="text-align:center;width: 4cm; "> (0.0007) </td> <td style="text-align:center;width: 4cm; "> (0.0007) </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> weather </td> <td style="text-align:center;width: 4cm; "> No </td> <td style="text-align:center;width: 4cm; "> Yes </td> <td style="text-align:center;width: 4cm; "> Yes </td> <td style="text-align:center;width: 4cm; "> No </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> weather (expanded) </td> <td style="text-align:center;width: 4cm; "> No </td> <td style="text-align:center;width: 4cm; "> No </td> <td style="text-align:center;width: 4cm; "> Yes </td> <td style="text-align:center;width: 4cm; "> No </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> weather (expanded, bins) </td> <td style="text-align:center;width: 4cm; "> No </td> <td style="text-align:center;width: 4cm; "> No </td> <td style="text-align:center;width: 4cm; "> No </td> <td style="text-align:center;width: 4cm; "> Yes </td> </tr> <tr> <td style="text-align:left;width: 8cm; font-weight: bold;"> fixed effects: </td> <td style="text-align:center;width: 4cm; font-weight: bold;"> </td> <td style="text-align:center;width: 4cm; font-weight: bold;"> </td> <td style="text-align:center;width: 4cm; font-weight: bold;"> </td> <td style="text-align:center;width: 4cm; font-weight: bold;"> </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> village </td> <td style="text-align:center;width: 4cm; "> Yes </td> <td style="text-align:center;width: 4cm; "> Yes </td> <td style="text-align:center;width: 4cm; "> Yes </td> <td style="text-align:center;width: 4cm; "> Yes </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> year </td> <td style="text-align:center;width: 4cm; "> Yes </td> <td style="text-align:center;width: 4cm; "> Yes </td> <td style="text-align:center;width: 4cm; "> Yes </td> <td style="text-align:center;width: 4cm; "> Yes </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> observations </td> <td style="text-align:center;width: 4cm; "> 1,266,922 </td> <td style="text-align:center;width: 4cm; "> 1,266,922 </td> <td style="text-align:center;width: 4cm; "> 1,266,922 </td> <td style="text-align:center;width: 4cm; "> 1,266,922 </td> </tr> </tbody> </table> --- ## First stage - particulate matter and exposure <table> <thead> <tr> <th style="text-align:left;"> </th> <th style="text-align:center;"> (1) </th> <th style="text-align:center;"> (2) </th> <th style="text-align:center;"> (3) </th> <th style="text-align:center;"> (4) </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;width: 8cm; "> wind </td> <td style="text-align:center;width: 4cm; "> 0.008*** </td> <td style="text-align:center;width: 4cm; "> 0.008*** </td> <td style="text-align:center;width: 4cm; "> 0.008*** </td> <td style="text-align:center;width: 4cm; "> 0.008*** </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> </td> <td style="text-align:center;width: 4cm; "> (0.000) </td> <td style="text-align:center;width: 4cm; "> (0.000) </td> <td style="text-align:center;width: 4cm; "> (0.000) </td> <td style="text-align:center;width: 4cm; "> (0.000) </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> weather </td> <td style="text-align:center;width: 4cm; "> No </td> <td style="text-align:center;width: 4cm; "> Yes </td> <td style="text-align:center;width: 4cm; "> Yes </td> <td style="text-align:center;width: 4cm; "> No </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> weather (expanded) </td> <td style="text-align:center;width: 4cm; "> No </td> <td style="text-align:center;width: 4cm; "> No </td> <td style="text-align:center;width: 4cm; "> Yes </td> <td style="text-align:center;width: 4cm; "> No </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> weather (expanded, bins) </td> <td style="text-align:center;width: 4cm; "> No </td> <td style="text-align:center;width: 4cm; "> No </td> <td style="text-align:center;width: 4cm; "> No </td> <td style="text-align:center;width: 4cm; "> Yes </td> </tr> <tr> <td style="text-align:left;width: 8cm; font-weight: bold;"> fixed effects: </td> <td style="text-align:center;width: 4cm; font-weight: bold;"> </td> <td style="text-align:center;width: 4cm; font-weight: bold;"> </td> <td style="text-align:center;width: 4cm; font-weight: bold;"> </td> <td style="text-align:center;width: 4cm; font-weight: bold;"> </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> village </td> <td style="text-align:center;width: 4cm; "> Yes </td> <td style="text-align:center;width: 4cm; "> Yes </td> <td style="text-align:center;width: 4cm; "> Yes </td> <td style="text-align:center;width: 4cm; "> Yes </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> year </td> <td style="text-align:center;width: 4cm; "> Yes </td> <td style="text-align:center;width: 4cm; "> Yes </td> <td style="text-align:center;width: 4cm; "> Yes </td> <td style="text-align:center;width: 4cm; "> Yes </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> F </td> <td style="text-align:center;width: 4cm; "> 1,236 </td> <td style="text-align:center;width: 4cm; "> 1,266 </td> <td style="text-align:center;width: 4cm; "> 1,205 </td> <td style="text-align:center;width: 4cm; "> 1,246 </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> observations </td> <td style="text-align:center;width: 4cm; "> 1,266,922 </td> <td style="text-align:center;width: 4cm; "> 1,266,922 </td> <td style="text-align:center;width: 4cm; "> 1,266,922 </td> <td style="text-align:center;width: 4cm; "> 1,266,922 </td> </tr> </tbody> </table> --- ## Effects of PM on agricultural productivity <br> - We are really interested in the effect of _pollution_, not wind<br><br> - Use wind as instrument? Assumes... - Conditional on fixed effects and weather... - Wind only affects agriculture through pollution<br><br> - Reasonable? --- ## Effects of PM on agricultural productivity (IV) <table> <thead> <tr> <th style="text-align:left;"> </th> <th style="text-align:center;"> (1) </th> <th style="text-align:center;"> (2) </th> <th style="text-align:center;"> (3) </th> <th style="text-align:center;"> (4) </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;width: 8cm; "> particulate matter </td> <td style="text-align:center;width: 4cm; "> -0.941*** </td> <td style="text-align:center;width: 4cm; "> -0.769*** </td> <td style="text-align:center;width: 4cm; "> -0.621*** </td> <td style="text-align:center;width: 4cm; "> -0.626*** </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> (log PM 2.5) </td> <td style="text-align:center;width: 4cm; "> (0.078) </td> <td style="text-align:center;width: 4cm; "> (0.075) </td> <td style="text-align:center;width: 4cm; "> (0.080) </td> <td style="text-align:center;width: 4cm; "> (0.077) </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> weather </td> <td style="text-align:center;width: 4cm; "> No </td> <td style="text-align:center;width: 4cm; "> Yes </td> <td style="text-align:center;width: 4cm; "> Yes </td> <td style="text-align:center;width: 4cm; "> No </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> weather (expanded) </td> <td style="text-align:center;width: 4cm; "> No </td> <td style="text-align:center;width: 4cm; "> No </td> <td style="text-align:center;width: 4cm; "> Yes </td> <td style="text-align:center;width: 4cm; "> No </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> weather (expanded, bins) </td> <td style="text-align:center;width: 4cm; "> No </td> <td style="text-align:center;width: 4cm; "> No </td> <td style="text-align:center;width: 4cm; "> No </td> <td style="text-align:center;width: 4cm; "> Yes </td> </tr> <tr> <td style="text-align:left;width: 8cm; font-weight: bold;"> fixed effects: </td> <td style="text-align:center;width: 4cm; font-weight: bold;"> </td> <td style="text-align:center;width: 4cm; font-weight: bold;"> </td> <td style="text-align:center;width: 4cm; font-weight: bold;"> </td> <td style="text-align:center;width: 4cm; font-weight: bold;"> </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> village </td> <td style="text-align:center;width: 4cm; "> Yes </td> <td style="text-align:center;width: 4cm; "> Yes </td> <td style="text-align:center;width: 4cm; "> Yes </td> <td style="text-align:center;width: 4cm; "> Yes </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> year </td> <td style="text-align:center;width: 4cm; "> Yes </td> <td style="text-align:center;width: 4cm; "> Yes </td> <td style="text-align:center;width: 4cm; "> Yes </td> <td style="text-align:center;width: 4cm; "> Yes </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> F (first stage) </td> <td style="text-align:center;width: 4cm; "> 1,236 </td> <td style="text-align:center;width: 4cm; "> 1,266 </td> <td style="text-align:center;width: 4cm; "> 1,205 </td> <td style="text-align:center;width: 4cm; "> 1,246 </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> observations </td> <td style="text-align:center;width: 4cm; "> 1,266,922 </td> <td style="text-align:center;width: 4cm; "> 1,266,922 </td> <td style="text-align:center;width: 4cm; "> 1,266,922 </td> <td style="text-align:center;width: 4cm; "> 1,266,922 </td> </tr> </tbody> </table> --- ## Robustness check: leads of wind direction <table> <thead> <tr> <th style="text-align:left;"> </th> <th style="text-align:center;"> (1) </th> <th style="text-align:center;"> (2) </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;width: 8cm; "> particulate matter </td> <td style="text-align:center;width: 5cm; "> -0.033 </td> <td style="text-align:center;width: 5cm; "> </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> (one-year lead) </td> <td style="text-align:center;width: 5cm; "> (0.067) </td> <td style="text-align:center;width: 5cm; "> </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> particulate matter </td> <td style="text-align:center;width: 5cm; "> </td> <td style="text-align:center;width: 5cm; "> -0.070 </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> (two-year lead) </td> <td style="text-align:center;width: 5cm; "> </td> <td style="text-align:center;width: 5cm; "> (0.052) </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> weather (expanded, bins) </td> <td style="text-align:center;width: 5cm; "> Yes </td> <td style="text-align:center;width: 5cm; "> Yes </td> </tr> <tr> <td style="text-align:left;width: 8cm; font-weight: bold;"> fixed effects: </td> <td style="text-align:center;width: 5cm; font-weight: bold;"> </td> <td style="text-align:center;width: 5cm; font-weight: bold;"> </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> village </td> <td style="text-align:center;width: 5cm; "> Yes </td> <td style="text-align:center;width: 5cm; "> Yes </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> year </td> <td style="text-align:center;width: 5cm; "> Yes </td> <td style="text-align:center;width: 5cm; "> Yes </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> F (first stage) </td> <td style="text-align:center;width: 5cm; "> 592 </td> <td style="text-align:center;width: 5cm; "> 783 </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> observations </td> <td style="text-align:center;width: 5cm; "> 1,161,265 </td> <td style="text-align:center;width: 5cm; "> 1,055,562 </td> </tr> </tbody> </table> --- ## Heterogeneity <table> <thead> <tr> <th style="empty-cells: hide;border-bottom:hidden;" colspan="1"></th> <th style="border-bottom:hidden;padding-bottom:0; padding-left:3px;padding-right:3px;text-align: center; " colspan="2"><div style="border-bottom: 1px solid #ddd; padding-bottom: 5px; ">wind</div></th> <th style="border-bottom:hidden;padding-bottom:0; padding-left:3px;padding-right:3px;text-align: center; " colspan="2"><div style="border-bottom: 1px solid #ddd; padding-bottom: 5px; ">yield</div></th> <th style="empty-cells: hide;border-bottom:hidden;" colspan="1"></th> </tr> <tr> <th style="text-align:left;"> </th> <th style="text-align:center;"> >p(50) </th> <th style="text-align:center;"> <=p(50) </th> <th style="text-align:center;"> >p(50) </th> <th style="text-align:center;"> <=p(50) </th> <th style="text-align:center;"> </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;width: 8cm; "> PM 2.5 </td> <td style="text-align:center;width: 4cm; "> -0.415*** </td> <td style="text-align:center;width: 4cm; "> -0.336*** </td> <td style="text-align:center;width: 4cm; "> -1.026*** </td> <td style="text-align:center;width: 4cm; "> -0.568*** </td> <td style="text-align:center;width: 4cm; "> -0.306*** </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> </td> <td style="text-align:center;width: 4cm; "> (0.114) </td> <td style="text-align:center;width: 4cm; "> (0.099) </td> <td style="text-align:center;width: 4cm; "> (0.060) </td> <td style="text-align:center;width: 4cm; "> (0.166) </td> <td style="text-align:center;width: 4cm; "> (0.077) </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> PM times rain </td> <td style="text-align:center;width: 4cm; "> </td> <td style="text-align:center;width: 4cm; "> </td> <td style="text-align:center;width: 4cm; "> </td> <td style="text-align:center;width: 4cm; "> </td> <td style="text-align:center;width: 4cm; "> 0.119*** </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> </td> <td style="text-align:center;width: 4cm; "> </td> <td style="text-align:center;width: 4cm; "> </td> <td style="text-align:center;width: 4cm; "> </td> <td style="text-align:center;width: 4cm; "> </td> <td style="text-align:center;width: 4cm; "> (0.002) </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> weather (expanded, bins) </td> <td style="text-align:center;width: 4cm; "> Yes </td> <td style="text-align:center;width: 4cm; "> Yes </td> <td style="text-align:center;width: 4cm; "> Yes </td> <td style="text-align:center;width: 4cm; "> Yes </td> <td style="text-align:center;width: 4cm; "> Yes </td> </tr> <tr> <td style="text-align:left;width: 8cm; font-weight: bold;"> fixed effects: </td> <td style="text-align:center;width: 4cm; font-weight: bold;"> </td> <td style="text-align:center;width: 4cm; font-weight: bold;"> </td> <td style="text-align:center;width: 4cm; font-weight: bold;"> </td> <td style="text-align:center;width: 4cm; font-weight: bold;"> </td> <td style="text-align:center;width: 4cm; font-weight: bold;"> </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> village </td> <td style="text-align:center;width: 4cm; "> Yes </td> <td style="text-align:center;width: 4cm; "> Yes </td> <td style="text-align:center;width: 4cm; "> Yes </td> <td style="text-align:center;width: 4cm; "> Yes </td> <td style="text-align:center;width: 4cm; "> Yes </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> year </td> <td style="text-align:center;width: 4cm; "> Yes </td> <td style="text-align:center;width: 4cm; "> Yes </td> <td style="text-align:center;width: 4cm; "> Yes </td> <td style="text-align:center;width: 4cm; "> Yes </td> <td style="text-align:center;width: 4cm; "> Yes </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> F (1st stage, PM) </td> <td style="text-align:center;width: 4cm; "> 597 </td> <td style="text-align:center;width: 4cm; "> 482 </td> <td style="text-align:center;width: 4cm; "> 675 </td> <td style="text-align:center;width: 4cm; "> 428 </td> <td style="text-align:center;width: 4cm; "> 674 </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> F (1st stage, PM times rain) </td> <td style="text-align:center;width: 4cm; "> </td> <td style="text-align:center;width: 4cm; "> </td> <td style="text-align:center;width: 4cm; "> </td> <td style="text-align:center;width: 4cm; "> </td> <td style="text-align:center;width: 4cm; "> 6,393 </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> observations </td> <td style="text-align:center;width: 4cm; "> 617,804 </td> <td style="text-align:center;width: 4cm; "> 649,118 </td> <td style="text-align:center;width: 4cm; "> 634,342 </td> <td style="text-align:center;width: 4cm; "> 632,580 </td> <td style="text-align:center;width: 4cm; "> 1,266,922 </td> </tr> </tbody> </table> --- ## Outline <br> - .gray[General idea and data]<br><br> - .gray[Estimating effects of pollution on agricultural productivity]<br><br> - Heterogeneity, including by labor intensities of crops<br><br> - .gray[Overall pollution vs. pollution specifically from coal]<br><br> - .gray[Wrapping up] --- ## Taking stock <br> - We see clear negative effects of pollution on productivity - Absolute deviation of exposure is approx. 8 days, meaning 2-3 percent change in productivity - Using AD of PM, it's above 20 percent change<br><br> - Key question: what is the driver? - Land? - Labor?<br><br> - Hard to look explicitly at land, so let's look at labor - Specifically, effects based on predominant crop --- ## Most common crop by village <img src="index_files/figure-html/crops-1.png" width="100%" /> --- ## How does this help? <br> - Different crops have different labor intensities<br><br> - Rice has the highest (from Michler, 2020): - Rice: 1,767 hours per hectare - Next highest: cotton at 857.5 hours per hectare --- ## Heterogeneity by rice growing regions <table> <thead> <tr> <th style="text-align:left;"> </th> <th style="text-align:center;"> (1) </th> <th style="text-align:center;"> (2) </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;width: 8cm; "> particulate matter </td> <td style="text-align:center;width: 5cm; "> -0.287** </td> <td style="text-align:center;width: 5cm; "> -0.394*** </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> (log PM 2.5) </td> <td style="text-align:center;width: 5cm; "> (0.133) </td> <td style="text-align:center;width: 5cm; "> (0.134) </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> PM 2.5 times rice </td> <td style="text-align:center;width: 5cm; "> -0.338*** </td> <td style="text-align:center;width: 5cm; "> -0.205*** </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> </td> <td style="text-align:center;width: 5cm; "> (0.061) </td> <td style="text-align:center;width: 5cm; "> (0.060) </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> weather (expanded) </td> <td style="text-align:center;width: 5cm; "> Yes </td> <td style="text-align:center;width: 5cm; "> No </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> weather (expanded, bins) </td> <td style="text-align:center;width: 5cm; "> No </td> <td style="text-align:center;width: 5cm; "> Yes </td> </tr> <tr> <td style="text-align:left;width: 8cm; font-weight: bold;"> fixed effects: </td> <td style="text-align:center;width: 5cm; font-weight: bold;"> </td> <td style="text-align:center;width: 5cm; font-weight: bold;"> </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> village </td> <td style="text-align:center;width: 5cm; "> Yes </td> <td style="text-align:center;width: 5cm; "> Yes </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> year </td> <td style="text-align:center;width: 5cm; "> Yes </td> <td style="text-align:center;width: 5cm; "> Yes </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> F (PM 2.5) </td> <td style="text-align:center;width: 5cm; "> 1,369 </td> <td style="text-align:center;width: 5cm; "> 1,168 </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> F (PM 2.5 times rice) </td> <td style="text-align:center;width: 5cm; "> 2,107 </td> <td style="text-align:center;width: 5cm; "> 2,201 </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> observations </td> <td style="text-align:center;width: 5cm; "> 1,266,922 </td> <td style="text-align:center;width: 5cm; "> 1,266,922 </td> </tr> </tbody> </table> --- ## Second possibilitiy: heterogeneity by month of the season <br> - Labor demand varies across the season<br><br> - Pollution may have larger effects during certain months - Between July and October, own farm labor allocation highest in July and October (ICRISAT data)<br><br> - Effects on land should be higher in earlier months, effects on labor relatively higher during harvest --- ## Effects of pollution on productivity by month <img src="index_files/figure-html/monthlyyield-1.png" width="100%" /> --- ## Outline <br> - .gray[General idea and data]<br><br> - .gray[Estimating effects of pollution on agricultural productivity]<br><br> - .gray[Heterogeneity, including by labor intensities of crops]<br><br> - Overall pollution vs. pollution specifically from coal<br><br> - .gray[Wrapping up] --- ## Coal plants or overall pollution? <br> - I use the location of coal plants to identify high-pollution areas<br><br> - However, some coal plants open part-way through sample<br><br> - Differences-in-differences combined with IV - Differences in coal pollution, specifically, and other forms of pollution --- ## Coal plants over time <img src="index_files/figure-html/plants-1.gif" width="100%" /> --- ## Coal plants or overall pollution? <table> <thead> <tr> <th style="text-align:left;"> </th> <th style="text-align:center;"> (1) </th> <th style="text-align:center;"> (2) </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;width: 8cm; "> PM 2.5 </td> <td style="text-align:center;width: 5cm; "> -0.228*** </td> <td style="text-align:center;width: 5cm; "> -0.223*** </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> </td> <td style="text-align:center;width: 5cm; "> (0.066) </td> <td style="text-align:center;width: 5cm; "> (0.065) </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> PM 2.5 times Coal </td> <td style="text-align:center;width: 5cm; "> -0.250*** </td> <td style="text-align:center;width: 5cm; "> -0.220*** </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> </td> <td style="text-align:center;width: 5cm; "> (0.024) </td> <td style="text-align:center;width: 5cm; "> (0.025) </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> weather (expanded) </td> <td style="text-align:center;width: 5cm; "> Yes </td> <td style="text-align:center;width: 5cm; "> No </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> weather (expanded, bins) </td> <td style="text-align:center;width: 5cm; "> No </td> <td style="text-align:center;width: 5cm; "> Yes </td> </tr> <tr> <td style="text-align:left;width: 8cm; font-weight: bold;"> fixed effects: </td> <td style="text-align:center;width: 5cm; font-weight: bold;"> </td> <td style="text-align:center;width: 5cm; font-weight: bold;"> </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> year </td> <td style="text-align:center;width: 5cm; "> Yes </td> <td style="text-align:center;width: 5cm; "> Yes </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> village </td> <td style="text-align:center;width: 5cm; "> Yes </td> <td style="text-align:center;width: 5cm; "> Yes </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> F (pm) </td> <td style="text-align:center;width: 5cm; "> 769 </td> <td style="text-align:center;width: 5cm; "> 772 </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> F (pm times open) </td> <td style="text-align:center;width: 5cm; "> 231 </td> <td style="text-align:center;width: 5cm; "> 205 </td> </tr> <tr> <td style="text-align:left;width: 8cm; "> observations </td> <td style="text-align:center;width: 5cm; "> 1,266,922 </td> <td style="text-align:center;width: 5cm; "> 1,266,922 </td> </tr> </tbody> </table> --- ## Outline <br> - .gray[General idea and data]<br><br> - .gray[Estimating effects of pollution on agricultural productivity]<br><br> - .gray[Heterogeneity, including by labor intensities of crops]<br><br> - .gray[Overall pollution vs. pollution specifically from coal]<br><br> - Wrapping up --- ## Effects on overall agricultural productivity <br> - Match changes in pollution across districts with agricultural productivity estimates - ICRISAT has district-level estimates from 2001 and 2011 - Three common crops: rice, wheat, maize<br><br> - Use most conservative pollution effect estimate: -0.233 from pre-coal estimates - My sample overrepresents both pollution and coal pollution --- ## Effects on overall agricultural productivity <br> `$$\Delta log(\mathrm{counterfactual})_{d}-0.223\times\Delta log(PM2.5)_{d} = \Delta log(\mathrm{actual})_{d},$$` <br> - Use actual observed change in pollution to back out what *would have happened* if pollution had remained at 2001 levels - Winsorize changes in pollution at 95% (due to some large values) - Sum total output for entire country in each year --- ## Can't do individual crops... - I'd like to estimate regressions for each crop individually - Better estimates of effects of pollution<br><br> - However, small sample sizes for many of them: - Rice: 759,200 - Wheat: 376,032 - Maize: 51,564 - Cotton (common cash crop): 21,960<br><br> - Caveat: have to use one estimate for all crops --- ## Change in output and counterfactual, all districts <br><br> <table> <thead> <tr> <th style="text-align:left;"> </th> <th style="text-align:center;"> 2001 actual output </th> <th style="text-align:center;"> 2011 actual output </th> <th style="text-align:center;"> 2011 counterfactual </th> <th style="text-align:center;"> Difference (pct.) </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;width: 4cm; "> Rice </td> <td style="text-align:center;width: 4.6cm; "> 79,962 </td> <td style="text-align:center;width: 4.6cm; "> 93,238 </td> <td style="text-align:center;width: 4.6cm; "> 95,405 </td> <td style="text-align:center;width: 4.6cm; "> 2.3 </td> </tr> <tr> <td style="text-align:left;width: 4cm; "> Wheat </td> <td style="text-align:center;width: 4.6cm; "> 58,780 </td> <td style="text-align:center;width: 4.6cm; "> 93,975 </td> <td style="text-align:center;width: 4.6cm; "> 97,520 </td> <td style="text-align:center;width: 4.6cm; "> 3.8 </td> </tr> <tr> <td style="text-align:left;width: 4cm; "> Maize </td> <td style="text-align:center;width: 4.6cm; "> 11,935 </td> <td style="text-align:center;width: 4.6cm; "> 20,897 </td> <td style="text-align:center;width: 4.6cm; "> 21,832 </td> <td style="text-align:center;width: 4.6cm; "> 4.5 </td> </tr> </tbody> </table> --- ## Change in pollution <img src="index_files/figure-html/pollutionincrease-1.png" width="100%" /> --- ## Change in output, rice <img src="index_files/figure-html/counterfactualwheat-1.png" width="100%" /> --- ## Conclusion <br> - Pollution highest in poorer countries - South Asia, in particular<br><br> - Drivers of pollution are many - Coal plants - Transportation - Industry - Agriculture - etc.<br><br> - We already have plenty of evidence on effects of pollution on health --- ## Conclusion <br> - Paper presents evidence that air pollution leads to large decreases in agricultural productivity - Identification relies on within-village changes across seasons<br><br> - Air pollution worsened by around 15% from 1998 to 2019 - Conservative results indicate decreases of between 3 and 5 percent in agricultural productivity <br><br> - Key finding: effects larger where crops are more labor intensive --- ## Conclusion <br> - Overall cost/benefit way beyond scope of paper<br><br> - Instead, results point to importance of the location of pollution sources - Downwind villages suffer<br><br> - 30km radius indicates relatively long-range effects --- class: center, middle <font size = "40"> Thank you! </font> [https://joshmerfeld.github.io](https://joshmerfeld.github.io) <br> Twitter: [@Josh\_Merfeld](twitter.com/Josh_Merfeld)