class: center, middle, inverse, title-slide .title[ # Power plants and structural transformation ] .author[ ### Sunghun Lim
LSU
] .author[ ### Joshua D. Merfeld
KDI School and IZA
] .date[ ### December 2023 ] --- <style type="text/css"> /* Table width = 100% max-width */ /* .remark-slide table{ width: 100%; } */ /* Change the background color to white for shaded rows (even rows) */ .title-slide h3:nth-of-type(2) { color: red; } .remark-slide thead, .remark-slide tr:nth-child(n) { background-color: #A7A9AC; } .remark-slide table { background-color: #A7A9AC; } tfoot { font-size: 80%; } table{ border-collapse: collapse; border-color: transparent; background-color: #A7A9AC; } /* .hljs-github { background-image: url("logo.png"); background-position: bottom left; background-size: 10%; } .inverse { background-image: url(""); background-position: bottom left; background-size: 10%; } */ .title-slide { background-image: url("logo_title.png"); background-position: bottom left; background-size: 20%; } </style> ## This paper <br> - Following long literature on the structural transformation process <br><br> - Previous literature has focused on things like urbanization, technological change, trade, etc. <font size = "2"> (e.g. Michaels et al., 2012; Herrendorf et al., 2015; Samaniego and Sun, 2016; Teignier, 2018; Lim, 2021; Nguyen and Lim, 2023; Bustos et al., 2020) </font> <br><br> - More recently, focus on importance of infrastructure <font size = "2"> (e.g. Lakshmanan, 1989; Perez- Sebastian and Steinbuks, 2017; Timilsina et al., 2020; Moneke, 2020; Raifu et al., 2021) </font> - Much of this focused on roads <font size = "2"> (Datta, 2012; Ghani et al., 2016; Giobbons et al., 2019; Banerjee et al., 2020) </font> --- ## This paper <br> - Our focus: how does power plant infrastructure affect local development patterns? <br><br> - Coal plants - Predominant form of electricity in India - Plants over 30MW in this paper --- ## Main findings <br> - Increased structural transformation after opening of coal plants - Driven by manufacturing, not services <br><br> - Increased agglomeration - More people, more firms, more jobs - More electricity (and more reliable electricity) <br><br> - Areas located downwind of plants have starkly different patterns - Less employment than other areas - Remaining employment concentrated in larger firms --- ## Data <br> - Power plants - Coal plants over 30MW - Global Energy Monitor <br><br> - Indian Economic Census - 1990, 1998, 2005, 2013 <br><br> - Indian Population Census - 1991, 2001, 2011 <br><br> - Nightlights data from VIIRS - 2013-2020 <br><br> - Village shapefiles matched to censuses from SHRUG databaset <font size = "2"> (Asher et al., 2021) </font> --- ## Coal plants over time <img src="index_files/figure-html/plants-1.gif" width="100%" /> --- ## Methods <br> - Match the opening of coal plants to village-level census data from SHRUG <br><br> - Two-way fixed effects - Village and year fixed effects <br><br> - Use recent advancements in TWFE designs for consistent estimates - Use `did2s` package in `R` - Implements Butts and Gardner (2022), which calculates identical coefficients to Borusyak et al. (2021) --- ## Event study (standardized outcome) <img src="index_files/figure-html/eventstudy1-1.png" width="100%" /> --- ## Event study (standardized outcome) <img src="index_files/figure-html/eventstudy2-1.png" width="100%" /> --- ## Effects empirically, employment rates (standardized) <br><br> <table> <thead> <tr> <th style="text-align:left;"> </th> <th style="text-align:center;"> Emp. rate </th> <th style="text-align:center;"> Manuf. </th> <th style="text-align:center;"> Services </th> <th style="text-align:center;"> In firm of 21+ people </th> <th style="text-align:center;"> In private firm </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;width: 4cm; "> Coal plant within 50km </td> <td style="text-align:center;width: 2.5cm; "> -0.014 </td> <td style="text-align:center;width: 2.5cm; "> 0.031*** </td> <td style="text-align:center;width: 2.5cm; "> -0.177*** </td> <td style="text-align:center;width: 2.5cm; "> 0.477*** </td> <td style="text-align:center;width: 2.5cm; "> 0.056*** </td> </tr> <tr> <td style="text-align:left;width: 4cm; "> </td> <td style="text-align:center;width: 2.5cm; "> (0.008) </td> <td style="text-align:center;width: 2.5cm; "> (0.009) </td> <td style="text-align:center;width: 2.5cm; "> (0.019) </td> <td style="text-align:center;width: 2.5cm; "> (0.049) </td> <td style="text-align:center;width: 2.5cm; "> (0.007) </td> </tr> <tr> <td style="text-align:left;width: 4cm; "> Observations </td> <td style="text-align:center;width: 2.5cm; "> 1,604,998 </td> <td style="text-align:center;width: 2.5cm; "> 1,604,998 </td> <td style="text-align:center;width: 2.5cm; "> 1,522,711 </td> <td style="text-align:center;width: 2.5cm; "> 1,522,313 </td> <td style="text-align:center;width: 2.5cm; "> 1,522,711 </td> </tr> </tbody> </table> --- ## Effects empirically, population census <table> <thead> <tr> <th style="text-align:left;"> </th> <th style="text-align:center;"> Power </th> <th style="text-align:center;"> Pop (log) </th> <th style="text-align:center;"> Lit. rate </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;width: 4cm; "> Coal plant within 50km </td> <td style="text-align:center;width: 3.5cm; "> 0.075*** </td> <td style="text-align:center;width: 3.5cm; "> 0.020*** </td> <td style="text-align:center;width: 3.5cm; "> 0.018*** </td> </tr> <tr> <td style="text-align:left;width: 4cm; "> </td> <td style="text-align:center;width: 3.5cm; "> (0.004) </td> <td style="text-align:center;width: 3.5cm; "> (0.001) </td> <td style="text-align:center;width: 3.5cm; "> (0.004) </td> </tr> <tr> <td style="text-align:left;width: 4cm; "> Observations </td> <td style="text-align:center;width: 3.5cm; "> 1,164,672 </td> <td style="text-align:center;width: 3.5cm; "> 1,434,084 </td> <td style="text-align:center;width: 3.5cm; "> 1,434,084 </td> </tr> </tbody> </table> <br> <table> <thead> <tr> <th style="text-align:left;"> </th> <th style="text-align:center;"> Ag. (prop) </th> <th style="text-align:center;"> Ag. (log) </th> <th style="text-align:center;"> HH Manu. (prop) </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;width: 4cm; "> Coal plant within 50km </td> <td style="text-align:center;width: 3.5cm; "> -0.085*** </td> <td style="text-align:center;width: 3.5cm; "> -0.050*** </td> <td style="text-align:center;width: 3.5cm; "> -0.048*** </td> </tr> <tr> <td style="text-align:left;width: 4cm; "> </td> <td style="text-align:center;width: 3.5cm; "> (0.008) </td> <td style="text-align:center;width: 3.5cm; "> (0.004) </td> <td style="text-align:center;width: 3.5cm; "> (0.006) </td> </tr> <tr> <td style="text-align:left;width: 4cm; "> Observations </td> <td style="text-align:center;width: 3.5cm; "> 1,433,671 </td> <td style="text-align:center;width: 3.5cm; "> 1,408,509 </td> <td style="text-align:center;width: 3.5cm; "> 1,394,511 </td> </tr> </tbody> </table> --- ## Nightlights... more consistent power? <br> <table> <thead> <tr> <th style="text-align:left;"> </th> <th style="text-align:center;"> Nightlights (mean) </th> <th style="text-align:center;"> Nightlights (log sd) </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;width: 5cm; "> Coal plant within 50km </td> <td style="text-align:center;width: 4cm; "> 0.056*** </td> <td style="text-align:center;width: 4cm; "> -0.013*** </td> </tr> <tr> <td style="text-align:left;width: 5cm; "> </td> <td style="text-align:center;width: 4cm; "> (0.005) </td> <td style="text-align:center;width: 4cm; "> (0.002) </td> </tr> <tr> <td style="text-align:left;width: 5cm; "> Observations </td> <td style="text-align:center;width: 4cm; "> 3,042,032 </td> <td style="text-align:center;width: 4cm; "> 3,042,032 </td> </tr> </tbody> </table> --- ## Exposure to coal plant pollution, three examples <img src="index_files/figure-html/windexample-1.png" width="100%" /> --- ## Empirical results, economic census <br><br> <table> <thead> <tr> <th style="text-align:left;"> </th> <th style="text-align:center;"> Emp. rate </th> <th style="text-align:center;"> Manuf. </th> <th style="text-align:center;"> Services </th> <th style="text-align:center;"> In firm of 21+ people </th> <th style="text-align:center;"> In private firm </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;width: 4cm; "> Top quartile of exposure </td> <td style="text-align:center;width: 3cm; "> -0.060*** </td> <td style="text-align:center;width: 3cm; "> 0.003 </td> <td style="text-align:center;width: 3cm; "> -0.211*** </td> <td style="text-align:center;width: 3cm; "> 0.502*** </td> <td style="text-align:center;width: 3cm; "> 0.027** </td> </tr> <tr> <td style="text-align:left;width: 4cm; "> </td> <td style="text-align:center;width: 3cm; "> (0.012) </td> <td style="text-align:center;width: 3cm; "> (0.011) </td> <td style="text-align:center;width: 3cm; "> (0.027) </td> <td style="text-align:center;width: 3cm; "> (0.067) </td> <td style="text-align:center;width: 3cm; "> (0.013) </td> </tr> <tr> <td style="text-align:left;width: 4cm; "> Observations </td> <td style="text-align:center;width: 3cm; "> 505,278 </td> <td style="text-align:center;width: 3cm; "> 505,278 </td> <td style="text-align:center;width: 3cm; "> 478,985 </td> <td style="text-align:center;width: 3cm; "> 478,985 </td> <td style="text-align:center;width: 3cm; "> 478,985 </td> </tr> </tbody> </table> --- ## Empirical results, population census <br><br> <table> <thead> <tr> <th style="text-align:left;"> </th> <th style="text-align:center;"> Power </th> <th style="text-align:center;"> Pop (log) </th> <th style="text-align:center;"> Lit. rate </th> <th style="text-align:center;"> Agriculture </th> <th style="text-align:center;"> Marg. Workers </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;width: 4cm; "> Top quartile of exposure </td> <td style="text-align:center;width: 3cm; "> -0.023*** </td> <td style="text-align:center;width: 3cm; "> -0.012*** </td> <td style="text-align:center;width: 3cm; "> -0.030*** </td> <td style="text-align:center;width: 3cm; "> -0.117*** </td> <td style="text-align:center;width: 3cm; "> 0.091*** </td> </tr> <tr> <td style="text-align:left;width: 4cm; "> </td> <td style="text-align:center;width: 3cm; "> (0.006) </td> <td style="text-align:center;width: 3cm; "> (0.002) </td> <td style="text-align:center;width: 3cm; "> (0.006) </td> <td style="text-align:center;width: 3cm; "> (0.011) </td> <td style="text-align:center;width: 3cm; "> (0.009) </td> </tr> <tr> <td style="text-align:left;width: 4cm; "> Observations </td> <td style="text-align:center;width: 3cm; "> 321,457 </td> <td style="text-align:center;width: 3cm; "> 416,498 </td> <td style="text-align:center;width: 3cm; "> 416,498 </td> <td style="text-align:center;width: 3cm; "> 416,376 </td> <td style="text-align:center;width: 3cm; "> 411,787 </td> </tr> </tbody> </table> --- ## Wrapping up <br> - Still a work in progress, but... <br><br> - Coal plants have large effects on local development patterns - Increased structural transformation, driven by increase in manufacturing - Possible evidence that power is more consistent <br><br> - Areas downwind of plants have starkly different patterns - Less employment than other areas around coal plants - Remaining employment concentrated in larger firms --- ## Wrapping up <br> - Didn't present today, but new results: - Manufacturing increases most for metal products, consistent with increase in power supply - Large decrease in employment related to construction, which makes sense - No change in employment in transport-related industries --- class: center, middle <font size = "40"> Thank you! </font> [https://joshmerfeld.github.io](https://joshmerfeld.github.io) <br> [https://github.com/JoshMerfeld](https://github.com/JoshMerfeld) <br> Twitter: [@Josh\_Merfeld](twitter.com/Josh_Merfeld)